Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuous atmospheric pressure reactor

Fig. 7. Chemical vapor deposition continuous, atmospheric pressure reactor process ... Fig. 7. Chemical vapor deposition continuous, atmospheric pressure reactor process ...
Some reactants in atmospheric-pressure reactors must be highly diluted with inert gases to prevent vapor-phase precipitation, while generally no dilution is necessary at low pressure. However, atmospheric pressure reactors are simpler and cheaper. They can operate faster, on a continuous basis and, with recent design improvements, the quality of the deposits has been upgraded considerably and satisfactory deposits of many materials, such as oxides, are obtained. [Pg.122]

The reaction is initiated with nickel carbonyl. The feeds are adjusted to give the bulk of the carbonyl from carbon monoxide. The reaction takes place continuously in an agitated reactor with a Hquid recirculation loop. The reaction is mn at about atmospheric pressure and at about 40°C with an acetylene carbon monoxide mole ratio of 1.1 1 in the presence of 20% excess alcohol. The reactor effluent is washed with nickel chloride brine to remove excess alcohol and nickel salts and the brine—alcohol mixture is stripped to recover alcohol for recycle. The stripped brine is again used as extractant, but with a bleed stream returned to the nickel carbonyl conversion unit. The neutralized cmde monomer is purified by a series of continuous, low pressure distillations. [Pg.155]

The methanol carbonylation is performed ia the presence of a basic catalyst such as sodium methoxide and the product isolated by distillation. In one continuous commercial process (6) the methyl formate and dimethylamine react at 350 kPa (3.46 atm) and from 110 to 120°C to effect a conversion of about 90%. The reaction mixture is then fed to a reactor—stripper operating at about 275 kPa (2.7 atm), where the reaction is completed and DMF and methanol are separated from the lighter by-products. The cmde material is then purified ia a separate distillation column operating at atmospheric pressure. [Pg.513]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

The cmde phthaUc anhydride is subjected to a thermal pretreatment or heat soak at atmospheric pressure to complete dehydration of traces of phthahc acid and to convert color bodies to higher boiling compounds that can be removed by distillation. The addition of chemicals during the heat soak promotes condensation reactions and shortens the time required for them. Use of potassium hydroxide and sodium nitrate, carbonate, bicarbonate, sulfate, or borate has been patented (30). Purification is by continuous vacuum distillation, as shown by two columns in Figure 1. The most troublesome impurity is phthahde (l(3)-isobenzofuranone), which is stmcturaHy similar to phthahc anhydride. Reactor and recovery conditions must be carefully chosen to minimize phthahde contamination (31). Phthahde [87-41-2] is also reduced by adding potassium hydroxide during the heat soak (30). [Pg.484]

In the low temperature process, the slurry is heated to 105—108°C and held at temperature for 5—10 minutes. The resulting 1—2 DE hydrolyzate is flashed to atmospheric pressure and held at 95—100°C for one to two hours in a batch or continuous reactor. Because the enzyme is not significantly deactivated at the first-stage temperature, a second enzyme addition is not needed. This process is used woddwide throughout the starch-based sweetener industry and has been judged the most efficient process for dextrose production. [Pg.290]

Uranium hexafluoride [7783-81-5], UF, is an extremely corrosive, colorless, crystalline soHd, which sublimes with ease at room temperature and atmospheric pressure. The complex can be obtained by multiple routes, ie, fluorination of UF [10049-14-6] with F2, oxidation of UF with O2, or fluorination of UO [1344-58-7] by F2. The hexafluoride is monomeric in nature having an octahedral geometry. UF is soluble in H2O, CCl and other chlorinated hydrocarbons, is insoluble in CS2, and decomposes in alcohols and ethers. The importance of UF in isotopic enrichment and the subsequent apphcations of uranium metal cannot be overstated. The U.S. government has approximately 500,000 t of UF stockpiled for enrichment or quick conversion into nuclear weapons had the need arisen (57). With the change in pohtical tides and the downsizing of the nation s nuclear arsenal, debates over releasing the stockpiles for use in the production of fuel for civiUan nuclear reactors continue. [Pg.332]

On an industrial scale, PA-6 is synthesized from e-caprolactam with water as the initiator. The process is very simple if the reaction is earned out at atmospheric pressure. The polymerization is earned out in a VK-reactor (Fig. 3.23), which is a continuous reactor without a stirrer, with a residence time of 12-24 h at temperatures of 260-280°C.5,28 Molten lactam, initiator (water), and chain terminator (acetic acid) are added at the top and the polymer is discharged at the bottom to an extruder. In this extruder, other ingredients such as stabilizers, whiteners, pigments, and reinforcing fillers are added. The extruded thread is cooled in a water bath and granulated. The resultant PA-6 still contains 9-12%... [Pg.174]

Another example of a cold-wall reactor is shown in Fig. 5.9. It uses a hot plate and a conveyor belt for continuous operation at atmospheric pressure. Preheating and cooling zones reduce the possibility of thermal shock. The system is used extensively for high-volume production of silicon-dioxide coatings for semiconductor passivation and interlayer dielectrics. [Pg.120]

Figure 5.9. Continuous operation cold-wall reactor for atmospheric pressure deposition of Si02-... Figure 5.9. Continuous operation cold-wall reactor for atmospheric pressure deposition of Si02-...
This comprehensive article supplies details of a new catalytic process for the degradation of municipal waste plastics in a glass reactor. The degradation of plastics was carried out at atmospheric pressure and 410 degrees C in batch and continuous feed operation. The waste plastics and simulated mixed plastics are composed of polyethylene, polypropylene, polystyrene, polyvinyl chloride, acrylonitrile butadiene styrene, and polyethylene terephthalate. In the study, the degradation rate and yield of fuel oil recovery promoted by the use of silica alumina catalysts are compared with the non-catalytic thermal degradation. 9 refs. lAPAN... [Pg.65]

The reaction test was carried out at atmospheric pressure using a vertical continuous flow fixed bed reactor. The content of effluent gas was analyzed by a gas chromatograph (HP 5890). [Pg.226]

The MDA experiments were performed in a continuous down-flow fixed bed reactor at 700°C, atmospheric pressure, and a space velocity of 1500 em3/(gcat h). Catalysts were pretreated in He flow at 700°C for 30 min before feeding a CH4 N2 mixture in a 9 1 voEvol ratio (N2 used as internal standard). Unreacted methane, the reference N2, and the reaction products were analyzed on line in a gas chromatograph (HP-GC6890) as detailed in [6]. Product selectivities are given on a carbon basis. The use of N2 as internal standard allows to obtain the amount of carbonaceous residues as the amount of carbon required to close the mass carbon balances to 100%. [Pg.322]

After the activation period, the reactor temperature was decreased to 453 K, synthesis gas (H2 CO = 2 1) was introduced to the reactor, and the pressure was increased to 2.03 MPa (20.7 atm). The reactor temperature was increased to 493 K at a rate of 1 K/min, and the space velocity was maintained at 5 SL/h/gcat. The reaction products were continuously removed from the vapor space of the reactor and passed through two traps, a warm trap maintained at 373 K and a cold trap held at 273 K. The uncondensed vapor stream was reduced to atmospheric pressure through a letdown valve. The gas flow was measured using a wet test meter and analyzed by an online GC. The accumulated reactor liquid products were removed every 24 h by passing through a 2 pm sintered metal filter located below the liquid level in the CSTR. The conversions of CO and H2 were obtained by gas chromatography (GC) analysis (micro-GC equipped with thermal conductivity detectors) of the reactor exit gas mixture. The reaction products were collected in three traps maintained at different temperatures a hot trap (200°C), a warm trap (100°C), and a cold trap (0°C). The products were separated into different fractions (rewax, wax, oil, and aqueous) for quantification. However, the oil and wax fractions were mixed prior to GC analysis. [Pg.250]

Discontinuous (batch) processes are carried out in pressure vessels (autoclaves) where DMC is maintained as liquid by autogenous pressure. Instead, CF reactions at atmospheric pressure require that both DMC and the reagent(s) in the vapor phase come into contact with a catalytic bed a constraint that has spurred the development of new applications and alternative reaction engineering, namely, GL-PTC and the continuously fed stirred-tank reactor (CSTR). [Pg.81]

In this process, propane, and a small amount of hydrogen to control coking, are fed to either a fixed bed or moving bed reactor at 950—1300° F and near atmospheric pressure. Once again the catalyst, this time platinum on activated alumina impregnated with 20% chromium, promotes the reaction. In either design, the catalyst has to be regenerated continuously to maintain its activity. [Pg.77]

We have recently described another spectroscopic rnethod for observing IM reactions at atmospheric pressure that utilizes the photodetachment-modulated electron capture detector (PDM-ECD) as a means of monitoring the negative ions either consumed or produced in an IM reaction. The reaction of interest is made to occiu in a steady-state flow-through reactor in which ionization of the buffer gas is continuously caused by a Ni-on-Pt foil beta emitter. A chopped light beam of... [Pg.237]

The results remained irregular during this entire period and lacked reproducibility. An important progress however was that during this time my associate Stern developed a laboratory scale reactor which made it possible to work easily at pressures of a hundred odd atmospheres, a reactor of which we soon had two dozens and more in continuous... [Pg.89]

The aldol condensation/hydrogenation reaction was carried out in a continuous flow microreactor. The catalysts (0.5 g) were reduced in situ in a flow of H2 at atmospheric pressure at 723 K for 1 h for the palladium systems and 2 h for the nickel systems. The liquid reactant, acetone (Fisher Scientific HPLC grade >99.99%), was pumped via a Gilson HPLC 307 pump at 5 mL hr into the carrier gas stream of H2 (50 cm min ) (BOC high purity) where it entered a heated chamber and was volatilised. The carrier gas and reactant then entered the reactor containing the catalyst. The reactor was run at 6 bar pressure and at reaction temperatures between 373 and 673 K. Samples were collected in a cooled drop out tank and analyzed by a Thermoquest GC-MS fitted with a CP-Sil 5CB column... [Pg.74]


See other pages where Continuous atmospheric pressure reactor is mentioned: [Pg.63]    [Pg.69]    [Pg.63]    [Pg.69]    [Pg.151]    [Pg.366]    [Pg.547]    [Pg.923]    [Pg.106]    [Pg.166]    [Pg.189]    [Pg.265]    [Pg.298]    [Pg.322]    [Pg.394]    [Pg.562]    [Pg.370]    [Pg.495]    [Pg.355]    [Pg.241]    [Pg.425]    [Pg.443]    [Pg.455]    [Pg.305]    [Pg.44]    [Pg.399]    [Pg.185]    [Pg.189]    [Pg.220]    [Pg.251]    [Pg.268]    [Pg.327]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Pressurized reactors

Reactor pressure

© 2024 chempedia.info