Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Contact time, gas

M.90 (sediment/water, initial-final values of 5-100 d contact time, gas-purge technique-HPLC/fluo., ten Hulscher et al. 2003)... [Pg.713]

Other Models for Mass Transfer. In contrast to the film theory, other approaches assume that transfer of material does not occur by steady-state diffusion. Rather there are large fluid motions which constantiy bring fresh masses of bulk material into direct contact with the interface. According to the penetration theory (33), diffusion proceeds from the interface into the particular element of fluid in contact with the interface. This is an unsteady state, transient process where the rate decreases with time. After a while, the element is replaced by a fresh one brought to the interface by the relative movements of gas and Uquid, and the process is repeated. In order to evaluate a constant average contact time T for the individual fluid elements is assumed (33). This leads to relations such as... [Pg.23]

In fluid catalytic cracking, a partially vaporized gas oil is contacted with zeoflte catalyst (see Fluidization). Contact time varies from 5 s—2 min pressure usually is in the range of 250—400 kPa (2.5—4 atm), depending on the design of the unit reaction temperatures are 720—850 K (see BuTYLENEs). [Pg.126]

At atmospheric pressure, the conversion to trichlorosilane is limited to about 16%. The conversion of SiCl to HSiCl was found to be at equiUbrium. If contact time was greater than 45 s and the mole ratio of hydrogen to siUcon tetrachloride 1 1, then at 14 kPa (2 psi) and 550°C, the HSiCl mole fraction reached 0.7 but substantial formation of H2SiCl2 occurred (62). Enhancements in yield have been reported through preactivating the siUcon mass by removal of oxides (73) and the rapid thermal quench of the effluent gas stream (74). The reduction of siUcon tetrachloride in a plasma has also been reported (75). [Pg.23]

Ozone is only slightly soluble in water. Thus, factors that affect the mass transfer between the gas and Hquid phases are important and include temperature, pressure, contact time, contact surface area (bubble size), and pH. [Pg.163]

The stagnant-film model discussed previously assumes a steady state in which the local flux across each element of area is constant i.e., there is no accumulation of the diffusing species within the film. Higbie [Trans. Am. Jn.st. Chem. Eng., 31,365 (1935)] pointed out that industrial contactors often operate with repeated brief contacts between phases in which the contact times are too short for the steady state to be achieved. For example, Higbie advanced the theory that in a packed tower the liquid flows across each packing piece in laminar flow and is remixed at the points of discontinuity between the packing elements. Thus, a fresh liquid surface is formed at the top of each piece, and as it moves downward, it absorbs gas at a decreasing rate until it is mixed at the next discontinuity. This is the basis of penetration theoiy. [Pg.604]

There are a number of different types of experimental laboratory units that could be used to develop design data for chemically reacting systems. Charpentier [ACS Symp. Sen, 72, 223-261 (1978)] has summarized the state of the art with respect to methods of scaUng up lab-oratoiy data and tabulated typical values of the mass-transfer coefficients, interfacial areas, and contact times to be found in various commercial gas absorbers as well as in currently available laboratoiy units. [Pg.1366]

Several manual and continuous analytical techniques are used to measure SO2 in the atmosphere. The manual techniques involve two-stage sample collection and measurement. Samples are collected by bubbling a known volume of gas through a liquid collection medium. Collection efficiency is dependent on the gas-liquid contact time, bubble size, SO2 concentration, and SO2 solubility in the collection medium. The liquid medium contains chemicals which stabilize SO2 in solution by either complexation or oxidation to a more stable form. Field samples must be handled carefully to prevent losses from exposure to high temperatures. Samples are analyzed at a central laboratory by an appropriate method. [Pg.200]

Other Considerations For organic vapor HAP control applications, low outlet concentrations will typically be required, leading to impractically tall absorption towers, long contact times, and high liquid-gas ratios that may not be cost-effective. Wet scrubbers will generally be effective for HAP control when they are used in combination with other control devices such as incinerators or carbon adsorbers. [Pg.449]

Adsorption for gas purification comes under the category of dynamic adsorption. Where a high separation efficiency is required, the adsorption would be stopped when the breakthrough point is reached. The relationship between adsorbate concentration in the gas stream and the solid may be determined experimentally and plotted in the form of isotherms. These are usually determined under static equilibrium conditions but dynamic adsorption conditions operating in gas purification bear little relationship to these results. Isotherms indicate the affinity of the adsorbent for the adsorbate but do not relate the contact time or the amount of adsorbent required to reduce the adsorbate from one concentration to another. Factors which influence the service time of an adsorbent bed include the grain size of the adsorbent depth of adsorbent bed gas velocity temperature of gas and adsorbent pressure of the gas stream concentration of the adsorbates concentration of other gas constituents which may be adsorbed at the same time moisture content of the gas and adsorbent concentration of substances which may polymerize or react with the adsorbent adsorptive capacity of the adsorbent for the adsorbate over the concentration range applicable over the filter or carbon bed efficiency of adsorbate removal required. [Pg.284]

The main factors in the design of an adsorption system are the (1) Carbon consumption - The amount of earbon required to treat the liquid or gas, normally expressed per unit of the fluid treated and (2) Contact time - For a fixed flow rate, the contact time is directly proportional to the volume of carbon and is the main factor influencing the size of the adsorption system and capital cost. [Pg.407]


See other pages where Contact time, gas is mentioned: [Pg.702]    [Pg.752]    [Pg.762]    [Pg.877]    [Pg.923]    [Pg.960]    [Pg.1019]    [Pg.264]    [Pg.189]    [Pg.702]    [Pg.752]    [Pg.762]    [Pg.877]    [Pg.923]    [Pg.960]    [Pg.1019]    [Pg.264]    [Pg.189]    [Pg.20]    [Pg.287]    [Pg.476]    [Pg.457]    [Pg.501]    [Pg.508]    [Pg.225]    [Pg.285]    [Pg.377]    [Pg.242]    [Pg.242]    [Pg.460]    [Pg.502]    [Pg.1137]    [Pg.1235]    [Pg.1563]    [Pg.2099]    [Pg.2112]    [Pg.2116]    [Pg.101]    [Pg.474]    [Pg.457]    [Pg.249]    [Pg.276]    [Pg.288]    [Pg.304]    [Pg.373]    [Pg.466]    [Pg.29]    [Pg.103]   
See also in sourсe #XX -- [ Pg.158 ]




SEARCH



Contact time

© 2024 chempedia.info