Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conjugated description

The Hiickel description of aromaticity was based in part on benzene, a cyclic fully conjugated hydrocarbon having (4n -l- 2) -electrons (ff = I) in the closed shell (ring). [Pg.55]

Benzene has already been mentioned as a prime example of the inadequacy of a connection table description, as it cannot adequately be represented by a single valence bond structure. Consequently, whenever some property of an arbitrary molecule is accessed which is influenced by conjugation, the other possible resonance structures have to be at least generated and weighted. Attempts have already been made to derive adequate representations of r-electron systems [84, 85]. [Pg.65]

MM2 was, according the web site of the authors, released as MM2 87). The various MM2 flavors are superseded by MM3, with significant improvements in the functional form [10]. It was also extended to handle amides, polypeptides, and proteins [11]. The last release of this series was MM3(%). Further improvements followed by starting the MM4 series, which focuses on hydrocarbons [12], on the description of hyperconjugative effects on carbon-carbon bond lengths [13], and on conjugated hydrocarbons [14] with special emphasis on vibrational frequencies [15]. For applications of MM2 and MM3 in inorganic systems, readers are referred to the literature [16-19]. [Pg.350]

A familiar feature of the electronic theory is the classification of substituents, in terms of the inductive and conjugative or resonance effects, which it provides. Examples from substituents discussed in this book are given in table 7.2. The effects upon orientation and reactivity indicated are only the dominant ones, and one of our tasks is to examine in closer detail how descriptions of substituent effects of this kind meet the facts of nitration. In general, such descriptions find wide acceptance, the more so since they are now known to correspond to parallel descriptions in terms of molecular orbital theory ( 7.2.2, 7.2.3). Only in respect of the interpretation to be placed upon the inductive effect is there still serious disagreement. It will be seen that recent results of nitration studies have produced evidence on this point ( 9.1.1). [Pg.128]

Cyclic conjugation although necessary for aromaticity is not sufficient for it Some other factor or factors must contribute to the special stability of benzene and compounds based on the benzene ring To understand these factors let s return to the molecular orbital description of benzene... [Pg.451]

The General References and two other reviews (17,25) provide extensive descriptions of the chemistry of maleic anhydride and its derivatives. The broad industrial appHcations for this chemistry derive from the reactivity of the double bond in conjugation with the two carbonyl oxygens. [Pg.449]

Later there was an attempt by ab initio calculation to fit the electron structure of diazirine into the Walsh model of cyclopropane (69MI50800). According to these SCF-LCAO-MO calculations three MOs add to the description of the lone electron pairs, all of which also contribute to some extent to ring bonding. As to strain, 7r-character and conjugative effect, the term pseudo-rr-character was used. [Pg.197]

Although the Hiickel method has now been supplanted by more complete treatments for theoretical analysis of organic reactions, the pictures of the n orbitals of both linear and cyclic conjugated polyene systems that it provides are correct as to symmetry and the relative energy of the orbitals. In many reactions where the n system is the primary site of reactivity, these orbitals correctly describe the behavior of the systems. For that reason, the reader should develop a familiarity with the qualitative description of the n orbitals of typical linear polyenes and conjugated cyclic hydrocarbons. These orbitals will be the basis for further discussion in Chapters 9 and 11. [Pg.36]

The examples that have been presented in this section illustrate the approach that is used to describe structure and reactivity effects within the framework of MO description of structure. In the chapters that follow, both valence bond theory and MO theory will be used in the discussion of structure and reactivity. Qualitative valence bond terminology is normally most straightforward for saturated systems. MO theory provides useful insights into conjugated systems and into effects that depend upon the symmetry of the molecules under discussion. [Pg.57]

Aromaticity is usually described in MO terminology. Cyclic structures that have a particularly stable arrangement of occupied 7t molecular orbitals are called aromatic. A simple expression of the relationship between an MO description of stmcture and aromaticity is known as the Hiickel rule. It is derived from Huckel molecular orbital (HMO) theory and states that planar monocyclic completely conjugated hydrocarbons will be aromatic when the ring contains 4n + 2 n electrons. HMO calculations assign the n-orbital energies of the cyclic unsaturated systems of ring size 3-9 as shown in Fig. 9.1. (See Chapter 1, Section 1.4, p. 31, to review HMO theory.)... [Pg.509]

To recast the thermodynamic description in terms of independent variables that can be controlled in actual laboratory experiments (i.e., T, /i, and the set of strains or their conjugate stresses), it is sensible to introduce certain auxiliary thermodynamic potentials via Legendre transformations. This chapter is primarily concerned with... [Pg.7]

The cycloaddition reactions of carbonyl compounds with conjugated dienes cannot be discussed in this context without trying to understand the reaction mechanistically. This chapter will give the basic background to the reactions whereas Chapter 8 dealing with theoretical aspects of metal-catalyzed cycloaddition reactions will give a more detailed description of this class of reactions, and others discussed in this book. [Pg.152]

Conjugated enones are more stable than nonconjugated enones for the same reason that conjugated dienes are more stable than nonconjugated dienes (Section 14.1). Interaction between the tt electrons of the C=C bond and the tt electrons of the C=0 group leads to a molecular orbital description for a conjugated enone that shows an interaction of the tt electrons over all four atomic centers (Figure 23.3). [Pg.882]

In this contribution, we discussed effects of disorder on the electronic properties of quasi-one-dimensional Peierls systems, like the conjugated polymer fraus-poly-acetylene. Since polymer materials generally are rather disordered and the effect of disorder on any quasi-one-dimensional system is strong, a proper description of these materials requires consideration of such effects. [Pg.54]

The proposed scenario is mainly based on the molecular approach, which considers conjugated polymer films as an ensemble of short (molecular) segments. The main point in the model is that the nature of the electronic state is molecular, i.e. described by localized wavefunctions and discrete energy levels. In spite of the success of this model, in which disorder plays a fundamental role, the description of the basic intrachain properties remains unsatisfactory. The nature of the lowest excited state in m-LPPP is still elusive. Extrinsic dissociation mechanisms (such as charge transfer at accepting impurities) are not clearly distinguished from intrinsic ones, and the question of intrachain versus interchain charge separation is not yet answered. [Pg.456]

Overall, an unambiguous description of the current flow to a certain injection and transport model can not be obtained, as demonstrated by the example of LEDs based on Alq3. Similar to the organic molecule Alq3 and also the conjugated oligomer hexaphcnyl, it has been observed that many models presented above seem to describe the 1/V characteristics correctly [I02. ... [Pg.474]


See other pages where Conjugated description is mentioned: [Pg.41]    [Pg.735]    [Pg.51]    [Pg.204]    [Pg.177]    [Pg.71]    [Pg.72]    [Pg.979]    [Pg.162]    [Pg.470]    [Pg.323]    [Pg.9]    [Pg.11]    [Pg.31]    [Pg.46]    [Pg.268]    [Pg.361]    [Pg.979]    [Pg.127]    [Pg.37]    [Pg.44]    [Pg.507]    [Pg.523]    [Pg.1179]    [Pg.123]    [Pg.123]    [Pg.182]    [Pg.385]    [Pg.445]    [Pg.478]    [Pg.498]    [Pg.499]   
See also in sourсe #XX -- [ Pg.340 ]




SEARCH



Conjugate theory, description

Conjugated polymers description

Conjugation description

Conjugation description

Description conjugate preparation

© 2024 chempedia.info