Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensed phases pressure

The first stage is the exothermic reactions of the condensed phase. The reactions proceed on the surface or close to the surface. Because the reactions are in progress in the condensed phase, pressure does not impact a lot for flie react rates, but temperature does. This reaction space is the condensed zone. [Pg.29]

The standard-state fugacity of any component must be evaluated at the same temperature as that of the solution, regardless of whether the symmetric or unsymmetric convention is used for activity-coefficient normalization. But what about the pressure At low pressures, the effect of pressure on the thermodynamic properties of condensed phases is negligible and under such con-... [Pg.19]

The three general states of monolayers are illustrated in the pressure-area isotherm in Fig. IV-16. A low-pressure gas phase, G, condenses to a liquid phase termed the /i uid-expanded (LE or L ) phase by Adam [183] and Harkins [9]. One or more of several more dense, liquid-condensed phase (LC) exist at higher pressures and lower temperatures. A solid phase (S) exists at high pressures and densities. We briefly describe these phases and their characteristic features and transitions several useful articles provide a more detailed description [184-187]. [Pg.131]

This section discusses how spectroscopy, molecular beam scattering, pressure virial coeflScients, measurements on transport phenomena and even condensed phase data can help detemiine a potential energy surface. [Pg.200]

At the limit of extremely low particle densities, for example under the conditions prevalent in interstellar space, ion-molecule reactions become important (see chapter A3.51. At very high pressures gas-phase kinetics approach the limit of condensed phase kinetics where elementary reactions are less clearly defined due to the large number of particles involved (see chapter A3.6). [Pg.759]

Because of the general difficulty encountered in generating reliable potentials energy surfaces and estimating reasonable friction kernels, it still remains an open question whether by analysis of experimental rate constants one can decide whether non-Markovian bath effects or other influences cause a particular solvent or pressure dependence of reaction rate coefficients in condensed phase. From that point of view, a purely... [Pg.852]

Statistical mechanics computations are often tacked onto the end of ah initio vibrational frequency calculations for gas-phase properties at low pressure. For condensed-phase properties, often molecular dynamics or Monte Carlo calculations are necessary in order to obtain statistical data. The following are the principles that make this possible. [Pg.12]

Numerous mathematical formulas relating the temperature and pressure of the gas phase in equilibrium with the condensed phase have been proposed. The Antoine equation (Eq. 1) gives good correlation with experimental values. Equation 2 is simpler and is often suitable over restricted temperature ranges. In these equations, and the derived differential coefficients for use in the Hag-genmacher and Clausius-Clapeyron equations, the p term is the vapor pressure of the compound in pounds per square inch (psi), the t term is the temperature in degrees Celsius, and the T term is the absolute temperature in kelvins (r°C -I- 273.15). [Pg.389]

The values of the thermodynamic properties of the pure substances given in these tables are, for the substances in their standard states, defined as follows For a pure solid or liquid, the standard state is the substance in the condensed phase under a pressure of 1 atm (101 325 Pa). For a gas, the standard state is the hypothetical ideal gas at unit fugacity, in which state the enthalpy is that of the real gas at the same temperature and at zero pressure. [Pg.532]

The Beckstead-Derr-Price model (Fig. 1) considers both the gas-phase and condensed-phase reactions. It assumes heat release from the condensed phase, an oxidizer flame, a primary diffusion flame between the fuel and oxidizer decomposition products, and a final diffusion flame between the fuel decomposition products and the products of the oxidizer flame. Examination of the physical phenomena reveals an irregular surface on top of the unheated bulk of the propellant that consists of the binder undergoing pyrolysis, decomposing oxidizer particles, and an agglomeration of metallic particles. The oxidizer and fuel decomposition products mix and react exothermically in the three-dimensional zone above the surface for a distance that depends on the propellant composition, its microstmcture, and the ambient pressure and gas velocity. If aluminum is present, additional heat is subsequently produced at a comparatively large distance from the surface. Only small aluminum particles ignite and bum close enough to the surface to influence the propellant bum rate. The temperature of the surface is ca 500 to 1000°C compared to ca 300°C for double-base propellants. [Pg.36]

Units and Concentration. In the gaseous as well as the condensed phases, molecular concentration by molecular species is of prime importance. By convention, total pressure in a MaxweUian gas is used as though it indicates the quaUty of the vacuum and as though MaxweUian gases were the rule rather than the exception (12). In general, in dynamic systems, gas pressure (or its partial pressure components) is neither isotropic nor an adequate indicator of molecular significance. [Pg.366]

Interaction between Gaseous and Condensed Phases. In a closed vessel of volume Ucontaining a nonionized, unexcited molecular gas having total number of molecules A/, the change in the pressure P in the gas can often be predicted if the steady-state absolute temperature Tis changed to another steady, constant level ... [Pg.366]

Partial Concentration. The sum of the partial concentrations (pressures) in a free molecular gas is equal to the total concentration (pressure). However, all gaseous components, at the same partial pressure or absolute pressure or ratios thereof, are not likely to have the same significance to any or all vacuum appHcations. The significance of the condensed-phase concentrations must therefore be considered. [Pg.367]

Other Arsenic Hydrides. Diarsine [15942-63-9] AS2H4, occurs as a by-product in the preparation of arsine by treatment of a magnesium aluminum arsenide alloy with dilute sulfuric acid and also may be prepared by passing arsine at low pressure through an ozonizer-type discharge tube (19). Diarsine is fairly stable as a gas but quite unstable (above — 100°C) in condensed phases. The for diarsine is +117 4 kJ/mol (28 1 kcal/mol) and... [Pg.333]

Values extracted and in some cases rounded off from ttose cited in RaLinovict (ed.), Theimophysical Propeities of Neon, Ai gon, Kiypton and Xenon, Standards Press, Moscow, 1976. Ttis source contains values for tte compressed state for pressures up to 1000 bar, etc. t = triple point. Above tbe sobd line tbe condensed phase is solid below it, it is liquid. Tbe notation 5.646. signifies 5.646 X 10 . At 83.8 K, tbe viscosity of tbe saturated liquid is 2.93 X 10 Pa-s = 0.000293 Ns/ui . Tbis book was published in English translation by Hemisphere, New York, 1988 (604 pp.). [Pg.261]

The diazirines are of special interest because of their isomerism with the aliphatic diazo compounds. The diazirines show considerable differences in their properties from the aliphatic diazo compounds, except in their explosive nature. The compounds 3-methyl-3-ethyl-diazirine and 3,3-diethyldiazirine prepared by Paulsen detonated on shock and on heating. Small quantities of 3,3-pentamethylenediazirine (68) can be distilled at normal pressures (bp 109°C). On overheating, explosion followed. 3-n-Propyldiazirine exploded on attempts to distil it a little above room temperature. 3-Methyldiazirine is stable as a gas, but on attempting to condense ca. 100 mg for vapor pressure measurements, it detonated with complete destruction of the apparatus." Diazirine (67) decomposed at once when a sample which had been condensed in dry ice was taken out of the cold trap. Work with the lower molecular weight diazirines in condensed phases should therefore be avoided. [Pg.125]

In the preceding considerations of vapour-pressure it has been assumed that the pressure is uniform throughout the whole system. A condensed phase may, however, exist under a pressure different from that of its accompanying vapour, as in the following cases ... [Pg.199]


See other pages where Condensed phases pressure is mentioned: [Pg.105]    [Pg.239]    [Pg.379]    [Pg.238]    [Pg.105]    [Pg.239]    [Pg.379]    [Pg.238]    [Pg.134]    [Pg.546]    [Pg.124]    [Pg.830]    [Pg.850]    [Pg.1235]    [Pg.2761]    [Pg.3033]    [Pg.3033]    [Pg.545]    [Pg.260]    [Pg.432]    [Pg.433]    [Pg.496]    [Pg.480]    [Pg.197]    [Pg.199]    [Pg.312]    [Pg.371]    [Pg.375]    [Pg.2280]    [Pg.172]    [Pg.146]    [Pg.282]    [Pg.247]    [Pg.221]    [Pg.676]    [Pg.1118]    [Pg.1138]    [Pg.88]   
See also in sourсe #XX -- [ Pg.2 , Pg.16 , Pg.529 ]




SEARCH



Condensed phases

Condensing pressure

Phase condensation

Pressure condensation

Pressure condenser

© 2024 chempedia.info