Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensation ethyl acetoacetate

Methylthiouracil Methylthiouracil, 6-methyl-2-thio-2,4-(lH,3H)-pyrimidindione (25.2.3), is synthesized in a completely analogous manner by condensing ethyl acetoacetate with thiourea in the presence of sodium ethoxide [14]. [Pg.341]

Ethyl l-aryl-4-methyl-6-oxo-5-cyanopyridazine-3-carboxylate 221 was synthesized from ethyl 2-arylhydrazono-3-oxobutanoate 220 and ethyl cyanoacetate in acetic acid in the presence of ammonium acetate (1986H(24)1219, 1989T3597, 1988LA1005). Gewald and Hain (1984S62) could prepare these same pyridazinones 221 by condensing ethyl acetoacetate and malononitrile and subsequently coupling 224. However,... [Pg.26]

Under these circumstances, the overall transformation results in the acylation of the carbon nucleophile. An important group of these reactions involves acylation by esters, in which case the leaving group is alkloy or aryloxy. The self-condensation of esters is known as the Claisen condensation." Ethyl acetoacetate, for example. [Pg.84]

Hantzsch synthesis The formation of pyridine derivatives by the condensation of ethyl acetoacetate with ammonia and an aldehyde. Also applied to similar syntheses of pyrroles. [Pg.200]

This Reaction should be carefully distinguished from the Claisen Conden-tation, which is the condensation of an ester, under the influence of sodium ethoxide, with (i) another ester, (ii) a ketone, or (iii) a nitrile, with the elimination of alcohol. For details of this condensation, see Ethyl Acetoacetate, p. 264. [Pg.231]

Thus the sodio derivative (I) of the enol form of ethyl acetoacetate is obtained. This mechanism can clearly apply also to the condensation of an ester with a suitable ketone or nitrile, as in the above reactions (ii) and (iii) respectively. [Pg.265]

In the present preparation, ethyl acetoacetate is treated with sufficient nitrous acid to convert half into the a-nitroso (or a-oximino) ester, which is reduced by zinc and acetic acid to the a-amino ester (I). The latter then condenses with... [Pg.293]

Fit a three necked 250 ml. flask with a central rubber-sleeved or mercury-sealed stirrer, c/. Fig. 23(c), p. 45, where only two necks are shown, and with a thermometer the bulb of which reaches as near the bottom of the flask as the stirrer allows the third neck will carry at first a dropping-funnel and later a reflux condenser. Place 20 g. (19-5 ml.) of ethyl acetoacetate and 45 ml. of glacial acetic acid in the flask and by ice-water cooling adjust the temperature of the stirred mixture to 5 -7° maintain this temperature whilst adding a solution of 5 4 g. of sodium nitrite in 8 ml. of water slowly from the dropping-funnel during 15 minutes. Continue the stirring for 20-30 minutes, and then... [Pg.293]

This reaction consists of the condensation of two molecular equivalents of a 1,3 diketone (or a J3-keto-ester) with one equivalent of an aldehyde and one of ammonia. Thus the interaction of ethyl acetoacetate and acetaldehyde and ammonia affords the 1,4-dihy dro-pyridine derivative (1), which when boiled with dilute nitric acid readily undergoes dehydrogenation and aromatisation" to gb e the diethyl ester of collidine (or 2,4,6-trimethyl-pyridine-3,5 dicarboxylic acid (II)). For the initial condensation the solid aldehyde-ammonia can conveniently be used in place of the separate reagents. [Pg.295]

For the preparation of 4-substituted coumarins, a phenol may be condensed with ethyl acetoacetate under the influence of sulphuric acid. Thus resorcinol (II) readily undergoes this condensation (which is represented diagrammatically above) to give 7-hydroxy-4-methyl-coumarin (III). Note that the coumarins, like all 2 pyrones, are systematically lactones. [Pg.307]

Ethyl acetoacetate may be prepared by the action of sodium upon dry ethyl acetate and decomposition of the resulting sodio compound with dilute acetic acid. Most samples of ethyl acetate contain some ethyl alcohol and it is usually assumed that sodium ethoxidc is the condensing agent ... [Pg.475]

The formation of ethyl acetoacetate is an example of a general reaction knowu as the acetoacetlc ester condensation in which an ester having hydrogen on the a-carbon atom condenses with a second molecule of the same ester or with another ester (which may or may not have hydrogen on the a-carbon atom) in the presence of a basic catalyst (sodium, sodium ethoxide, sodamide, sodium triphenylmethide) to form a p-keto-ester. The mechanism of the reaction may be illustrated by the condensation of ethyl acetate with another molecule of ethyl acetate by means of sodium ethoxide. ... [Pg.476]

Resorcinol condenses similarly with ethyl acetoacetate in the presence of concentrated sulphuric acid to give 4-methyl-7-hydroxycoumarln. [Pg.854]

A simplified procedure is possible by using polyphosphoric acid as the condensing agent. Add 160 g. of polyphosphoric acid to a solution of 11 g. of resorcinol in 13 g. of ethyl acetoacetate. Stir the mixture and heat at 75-80° for 20 minutes, and then pour into ice-water. Collect the pale yellow solid by suction filtration, wash with a little cold water, and dry at 60°. The yield of crude 4-methyl-7-hydroxycoumarin, m.p. 178-181°, is 17 g. Recrystalbsation from dilute ethanol yields the pure, colourless compound, m.p. 185°. [Pg.855]

Pentanedione can also be produced by the condensation of acetone with ethyl acetate (312—317), or by the condensation of ethyl acetoacetate and ketene (318—321). Other methods are known (322,323). [Pg.499]

Condensation of campholenic aldehyde with ethyl acetoacetate with subsequent saponification and decarboxylation gives the intermediate unsaturated ketones. [Pg.424]

The Pechmaim reaction has found extensive appHcations for the synthesis of numerous coumarin derivatives (39). Coumarin derivatives substituted in the pyrone ring can be obtained by condensing phenol with beta-ketoesters. For example, 4-methylcoumarin (3) is obtained with ethyl acetoacetate... [Pg.320]

The most important synthesis of pyrazolones involves the condensation of a hydrazine with a P-ketoester such as ethyl acetoacetate. Commercially important pyrazolones carry an aryl substituent at the 1-position, mainly because the hydrazine precursors are prepared from readily available and comparatively inexpensive diazonium salts by reduction. In the first step of the synthesis the hydrazine is condensed with the P-ketoester to give a hydrazone heating with sodium carbonate then effects cyclization to the pyrazolone. In practice the condensation and cyclization reactions are usually done in one pot without isolating the hydrazone intermediate. [Pg.296]

The most convenient synthesis of 6-hydroxy-2-pyridones is by the condensation of a P-ketoester, eg, ethyl acetoacetate, with an active methylene compound, eg, malonic ester, cyanoacetic ester, and an amine. The amine can be omitted if an acetamide is used and in some cases this modification results in a higher yield. [Pg.297]

In a 3-I. three-necked, round-bottomed flask fitted with a mechanical stirrer, reflux condenser, and separatory funnel is placed 400 cc. of absolute alcohol (Note i). Through the condenser tube is added slowly, 23 g. (i gram atom) of dean sodium cut into thin slices. The completion of the reaction is hastened by heating the flask on a steam bath. When the sodium has dissolved completely, 143 g. (i.i moles) of ethyl acetoacetate is introduced slowly. Alter starting the mechanical stirrer, 123 g. (i mole) of ethyl chloroacetate (Note 2) is added slowly over a period of an hour, and the reaction mixture is refluxed for five to six hours. At this point the reaction mixture should no longer give an alkaline reaction with moist litmus. [Pg.38]

If the condensation product is used before it is dry, a large amount of carbon dioxide is evolved later in the course of the acidification, indicating incomplete utilization of the ethyl acetoacetate. [Pg.64]

Ethyl acetoacetate (acetoacetic ester), available by the Claisen condensation of ethyl acetate, has properties that make it a useful starting material for the preparation of ketones. These properties are... [Pg.894]

Bohlmann (207) reported the reaction of /I -dehydroquinolizidine with methyl vinyl ketone and with propargyl aldehyde forming a partially saturated derivative of julolidine 135 and julolidine (136), respectively. Compound 135 can be prepared also by mercuric acetate dehydrogenation of ketone 137, which is formed by condensation of 1-bromoethylquinolizi-dine with ethyl acetoacetate (Scheme 11). [Pg.283]

In 1887, Conrad and Limpach described the condensation of ethyl acetoacetate 5 with aniline 1 to provide enamine 6. Subsequent warming of the mixture provided quinoline 7. Limpach reported several years later that the yield of the cyclization step was improved when an inert solvent (e.g., mineral oil) was employed. While the cyclization step was normally quite facile at 240-280 °C, the physical properties and the methods described for the preparation of enamino-esters were inconsistent. [Pg.398]

The proposed mechanism for the Conrad-Limpach reaction is shown below. Condensation of an aniline with a 3-keto-ester (i.e., ethyl acetoacetate 5) with loss of water provides enamino-ester 6. Enolization furnishes 10 which undergoes thermal cyclization, analogous to the Gould-Jacobs reaction, via 6n electrocyclization to yield intermediate 11. Compound 11 suffers loss of alcohol followed by tautomerization to give 4-hydroxy-2-methylquinoline 7. An alternative to the proposed formation of 10 is ejection of alcohol from 6 furnishing ketene 13, which then undergoes 671 electrocyclization to provide 12. [Pg.399]

In a 1-L rbf attached to a Dean-Stark trap, equipped with a reflux condenser is placed distilled aniline (1, 46.5 g, 45.5 mL, 0.5 mol), commercially available ethyl acetoacetate (5, 65 g, 63.5 mL, 0.5 mol), benzene (100 mL) and glacial AcOH (1 mL). The flask is heated at about 125 °C, and the water which distills out of the mixture with the refluxing benzene is removed at intervals. Refluxing is continued until no more water separates (9 mL collects in about 3 hrs) and then for an additional 30 min. The benzene is then distilled under reduced pressure, and the residue is transferred to a 125 mL modified Claisen flask with an insulated column. The flask is heated in an oil or metal bath maintained at a temperature not higher than 120 °C while the forerun of 1 and 5 is removed and at 140-160 °C the product distills giving 78-82 g, 76-80% yield of 6. [Pg.405]

Forty years after the initial proposal, Sweet and Fissekis proposed a more detailed pathway involving a carbenium ion species. According to these authors the first step involved an aldol condensation between ethyl acetoacetate (6) and benzaldehyde (5) to deliver the aldol adduct 11. Subsequent dehydration of 11 furnished the key carbenium ion 12 which was in equilibrium with enone 13. Nucleophilic attack of 12 by urea then delivered ureide 14. Intramolecular cyclization produced a hemiaminal which underwent dehydration to afford dihydropyrimidinone 15. These authors demonstrated that the carbenium species was viable through synthesis. After enone 13 was synthesized, it was allowed to react with N-methyl urea to deliver the mono-N-methylated derivative of DHPM 15. [Pg.510]

The primary condensation product of 2-thiophenealdehyde with 2 moles of ethyl acetoacetate (189) has been cleaved with alkali to... [Pg.96]

This sequence is equally applicable to keto esters. Thus, condensation of guanidine with ethyl acetoacetate gives the pyrimidone, 134. Elaboration as above gives the pyrimidine, IJ5 acylation with the sulfonyl chloride (88) followed by hydrolysis yields sulfamerazine (107). Reaction of guanidine with beta dicarbonyl compounds gives the pyrimidine directly. Condensation of the base with acetonyl acetone affords the starting amine for sulfadimidine (108). ... [Pg.128]

Condensation of ethyl acetoacetate with phenyl hydrazine gives the pyrazolone, 58. Methylation by means of methyl iodide affords the prototype of this series, antipyrine (59). Reaction of that compound with nitrous acid gives the product of substitution at the only available position, the nitroso derivative (60) reduction affords another antiinflammatory agent, aminopyrine (61). Reductive alkylation of 61 with acetone in the presence of hydrogen and platinum gives isopyrine (62). Acylation of 61 with the acid chloride from nicotinic acid affords nifenazone (63). Acylation of 61 with 2-chloropropionyl chloride gives the amide, 64 displacement of the halogen with dimethylamine leads to aminopropylon (65). ... [Pg.234]

Although the antithyroid activity of compounds incorporating an enolizable thioamide function was discussed earlier, this activity was in fact first found in the pyrimidine series. The simplest compound to show this activity, methylthiouracil (80) (shown in both enol and keto forms), is prepared quite simply by condensation of ethyl acetoacetate with thiourea.Further work in this series shows that better activity was obtained by incorporation of a lipophilic side chain. Preparation of the required dicarbonyl compound starts with acylation of the magnesium enolate of the unsyrametrically esterified malonate, 81, with butyryl chlo-... [Pg.264]

A change in the pK of the molecule by elimination of the acidic enol function and inclusion of basic nitrogen leads to a marked change in biologic activity. That agent, chromonar (13) shows activity as a coronary vasodilator. Alkylation of ethyl acetoacetate with 2-chlorotriethylamine affords the substituted ketoester (10). Condensation with resorcinol in the presence of sulfuric acid affords directly the substituted coumarin (11). [Pg.331]


See other pages where Condensation ethyl acetoacetate is mentioned: [Pg.264]    [Pg.267]    [Pg.478]    [Pg.481]    [Pg.839]    [Pg.854]    [Pg.380]    [Pg.117]    [Pg.288]    [Pg.162]    [Pg.240]    [Pg.251]    [Pg.12]    [Pg.107]   
See also in sourсe #XX -- [ Pg.16 , Pg.17 ]

See also in sourсe #XX -- [ Pg.15 , Pg.17 ]




SEARCH



Acetoacetate ester synthesis Claisen condensation, ethyl acetate

Acetoacetic acid, ethyl ester, condensation

Condensation of ethyl acetoacetate with formaldehyde and ammonia

Condensation of ethyl acetoacetate with urea

Ethyl acetoacetate

Ethyl acetoacetate Claisen condensation

Thiourea condensation with ethyl acetoacetate

© 2024 chempedia.info