Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounds, and Molecules

Sir Humphry Davy attempted to isolate this unidentified element through electrolysis—but failed. It was not until 1824 that Jons Jakob Berzehus (1779—1848), who had earlier discovered cerium, osmium, and iridium, became the first person to separate the element silicon from its compound molecule and then identify it as a new element. Berzehus did this by a two-step process that basically involved heating potassium metal chips with a form of silica (SiF = silicon tetrafluoride) and then separating the resulting mixture of potassium fluoride and silica (SiF + 4K —> 4KF + Si). Today, commercial production of sihcon features a chemical reaction (reduction) between sand (SiO ) and carbon at temperatures over 2,200°C (SiO + 2C + heat— 2CO + Si). [Pg.196]

According to current concepts of the theory of solutions, the magnitude of any compound solubility results from interacting force between compound molecules and solvent molecules. A quantitative expression for the force of intermolecular... [Pg.22]

The investigation of molecular structures and their properties is one of most fascinating topics in chemistry. Since the first alchemy experiments, scientists have created a language consisting of symbols, terms, and notations to describe compounds, molecules, and their properties. This language was refined to give a unique notation known today by scientists all over the world. The increasing use of computational... [Pg.69]

X. The number of chemical compounds (molecules and crystals) in inert natural bodies is limited. [Pg.31]

The ability to assign a group of resonance states, as required for mode-specific decomposition, implies that the complete Hamiltonian for these states is well approxmiated by a zero-order Hamiltonian with eigenfunctions [M]. The ( ). are product fiinctions of a zero-order orthogonal basis for the reactant molecule and the quantity m. represents the quantum numbers defining ( ).. The wavefimctions / for the compound state resonances are given by... [Pg.1030]

There are many compounds in existence which have a considerable positive enthalpy of formation. They are not made by direct union of the constituent elements in their standard states, but by some process in which the necessary energy is provided indirectly. Many known covalent hydrides (Chapter 5) are made by indirect methods (for example from other hydrides) or by supplying energy (in the form of heat or an electric discharge) to the direct reaction to dissociate the hydrogen molecules and also possibly vaporise the other element. Other known endothermic compounds include nitrogen oxide and ethyne (acetylene) all these compounds have considerable kinetic stability. [Pg.77]

The V(IV) species are all d complexes, hence their colour. Besides the VO compounds, some halides VX4 are known, for example VCI4, a liquid with a tetrahedral, covalent molecule and properties similar to those of TiCl4, but coloured (red-brown). [Pg.375]

HMO theory is named after its developer, Erich Huckel (1896-1980), who published his theory in 1930 [9] partly in order to explain the unusual stability of benzene and other aromatic compounds. Given that digital computers had not yet been invented and that all Hiickel s calculations had to be done by hand, HMO theory necessarily includes many approximations. The first is that only the jr-molecular orbitals of the molecule are considered. This implies that the entire molecular structure is planar (because then a plane of symmetry separates the r-orbitals, which are antisymmetric with respect to this plane, from all others). It also means that only one atomic orbital must be considered for each atom in the r-system (the p-orbital that is antisymmetric with respect to the plane of the molecule) and none at all for atoms (such as hydrogen) that are not involved in the r-system. Huckel then used the technique known as linear combination of atomic orbitals (LCAO) to build these atomic orbitals up into molecular orbitals. This is illustrated in Figure 7-18 for ethylene. [Pg.376]

From the standpoint of thermodynamics, the dissolving process is the estabHsh-ment of an equilibrium between the phase of the solute and its saturated aqueous solution. Aqueous solubility is almost exclusively dependent on the intermolecular forces that exist between the solute molecules and the water molecules. The solute-solute, solute-water, and water-water adhesive interactions determine the amount of compound dissolving in water. Additional solute-solute interactions are associated with the lattice energy in the crystalline state. [Pg.495]

The group contribution method allows the approximate calculation of solubility by summing up fragmental values associated with substmctural units of the compounds (see Section 7.1). In a group contribution model, the aqueous solubility values are computed by Eq. (12), where log S is the logarithm of solubility, C is the number of occurrences of a substmctural group, i, in a molecule, and is the relative contribution of the fragment i. [Pg.496]

The compounds were described by a set of 32 radial distribution function (RDF) code values [27] representing the 3D structure of a molecule and eight additional descriptors. The 3D coordinates were obtained using the 3D structure generator GORINA [33]. [Pg.501]

In dissimilarity-based compound selection the required subset of molecules is identified directly, using an appropriate measure of dissimilarity (often taken to be the complement of the similarity). This contrasts with the two-stage procedure in cluster analysis, where it is first necessary to group together the molecules and then decide which to select. Most methods for dissimilarity-based selection fall into one of two categories maximum dissimilarity algorithms and sphere exclusion algorithms [Snarey et al. 1997]. [Pg.699]

The analyses which follow are arranged in the order in which they would be applied to a newly discovered substance, the estimation of the elements present and molecular weight deter-minations(f.e., determination of empirical and molecular formulae respectively) coming first, then the estimation of particular groups in the molecule, and finally the estimation of special classes of organic compounds. It should be noted, however, that this systematic order differs considerably from the order of experimental difficulty of the individual analyses. Consequently many of the later macro-analyses, such as the estimation of hydroxyl groups, acetyl groups, urea, etc. may well be undertaken by elementary students, while the earlier analyses, such as estimation of elements present in the molecule, should be reserved for more senior students. [Pg.416]

One of the most important characteristics of micelles is their ability to take up all kinds of substances. Binding of these compounds to micelles is generally driven by hydrophobic and electrostatic interactions. The dynamics of solubilisation into micelles are similar to those observed for entrance and exit of individual surfactant molecules. Their uptake into micelles is close to diffusion controlled, whereas the residence time depends on the sttucture of the molecule and the solubilisate, and is usually in the order of 10 to 10" seconds . Hence, these processes are fast on the NMR time scale. [Pg.127]

Interactions between nonpolar compounds are generally stronger in water than in organic solvents. At concentrations where no aggregation or phase separation takes place, pairwise hydrophobic interactions can occur. Under these conditions, the lowest energy state for a solute molecule is the one in which it is completely surrounded by water molecules. However, occasionally, it will also meet other solute molecules, and form short-lived encounter complexes. In water, the lifetime of these complexes exceeds that in organic solvents, since the partial desolvation that accompanies the formation of these complexes is less unfavourable in water than in organic solvents. [Pg.167]

For nitrations in sulphuric and perchloric acids an increase in the reactivity of the aromatic compound being nitrated beyond the level of about 38 times the reactivity of benzene cannot be detected. At this level, and with compounds which might be expected to surpass it, a roughly constant value of the second-order rate constant is found (table 2.6) because aromatic molecules and nitronium ions are reacting upon encounter. The encounter rate is measurable, and recognisable, because the concentration of the effective electrophile is so small. [Pg.46]

Nitration in sulphuric acid is a reaction for which the nature and concentrations of the electrophile, the nitronium ion, are well established. In these solutions compounds reacting one or two orders of magnitude faster than benzene do so at the rate of encounter of the aromatic molecules and the nitronium ion ( 2.5). If there were a connection between selectivity and reactivity in electrophilic aromatic substitutions, then electrophiles such as those operating in mercuration and Friedel-Crafts alkylation should be subject to control by encounter at a lower threshold of substrate reactivity than in nitration this does not appear to occur. [Pg.142]

Our first three chapters established some fundamental principles concerning the structure of organic molecules and introduced the connection between structure and reactivity with a review of acid-base reactions In this chapter we explore structure and reactivity m more detail by developing two concepts functional groups and reaction mechanisms A functional group is the atom or group m a molecule most respon sible for the reaction the compound undergoes under a prescribed set of conditions How the structure of the reactant is transformed to that of the product is what we mean by the reaction mechanism... [Pg.142]

Begin by asking the question What kind of compound is the target molecule and what methods can I use to prepare that kind of compound The desired product has a bromine and a hydroxyl on adjacent carbons it is a vicinal bromohydrin The only method we have learned so far for the preparation of vicinal bromohydrms involves the reaction of alkenes with Bi2 m water Thus a reasonable last step is... [Pg.265]


See other pages where Compounds, and Molecules is mentioned: [Pg.82]    [Pg.659]    [Pg.212]    [Pg.271]    [Pg.86]    [Pg.1013]    [Pg.82]    [Pg.659]    [Pg.212]    [Pg.271]    [Pg.86]    [Pg.1013]    [Pg.155]    [Pg.1076]    [Pg.1447]    [Pg.230]    [Pg.152]    [Pg.178]    [Pg.98]    [Pg.124]    [Pg.310]    [Pg.497]    [Pg.117]    [Pg.505]    [Pg.518]    [Pg.701]    [Pg.727]    [Pg.1136]    [Pg.21]    [Pg.22]    [Pg.22]    [Pg.32]    [Pg.113]    [Pg.136]    [Pg.284]    [Pg.147]    [Pg.13]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Covalent Compounds and Organic Molecules

For molecules and ionic compounds

Insertion Reactions of Transition Metal-Carbon cr-Bonded Compounds. II. Sulfur Dioxide and Other Molecules

Molecules and Molecular Compounds

Molecules, Compounds, and Chemical Equations

Skill 12.1c-Differentiate between atoms, molecules, elements, and compounds

Small Molecule and Bond Activation by Diiridium Compounds

© 2024 chempedia.info