Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compound Solid-state Properties

Solid solutions are very common among structurally related compounds. Just as metallic elements of similar structure and atomic properties form alloys, certain chemical compounds can be combined to produce derivative solid solutions, which may permit realization of properties not found in either of the precursors. The combinations of binary compounds with common anion or common cation element, such as the isovalent alloys of IV-VI, III-V, II-VI, or I-VII members, are of considerable scientific and technological interest as their solid-state properties (e.g., electric and optical such as type of conductivity, current carrier density, band gap) modulate regularly over a wide range through variations in composition. A general descriptive scheme for such alloys is as follows [41]. [Pg.22]

The phenomenon of pseudopolymorphism is also observed, i.e., compounds can crystallize with one or more molecules of solvent in the crystal lattice. Conversion from solvated to nonsolvated, or hydrate to anhydrous, and vice versa, can lead to changes in solid-state properties. For example, a moisture-mediated phase transformation of carbamazepine to the dihydrate has been reported to be responsible for whisker growth on the surface of tablets. The effect can be retarded by the inclusion of Polyoxamer 184 in the tablet formulation [61]. [Pg.153]

The pharmaceutical industry has taken great interest of late in the study of polymorphism and solvatomorphism in its materials, since a strong interest in the phenomena has developed now that regulatory authorities understand that the nature of the structure adopted by a given compound upon crystallization can exert a profound effect on its solid-state properties. For a given material, the heat capacity, conductivity, volume, density, viscosity, surface tension, diffusivity, crystal... [Pg.263]

X-ray diffraction studies are usually carried out at room temperature under ambient conditions. It is possible, however, to perform variable-temperature XPD, wherein powder patterns are obtained while the sample is heated or cooled. Such studies are invaluable for identifying thermally induced or subambient phase transitions. Variable-temperature XPD was used to study the solid state properties of lactose [20], Fawcett et al. have developed an instrument that permits simultaneous XPD and differential scanning calorimetry on the same sample [21], The instrument was used to characterize a compound that was capable of existing in two polymorphic forms, whose melting points were 146°C (form II) and 150°C (form I). Form II was heated, and x-ray powder patterns were obtained at room temperature, at 145°C (form II had just started to melt), and at 148°C (Fig. 2 one characteristic peak each of form I and form II are identified). The x-ray pattern obtained at 148°C revealed melting of form II but partial recrystallization of form I. When the sample was cooled to 110°C and reheated to 146°C, only crystalline form I was observed. Through these experiments, the authors established that melting of form II was accompanied by recrystallization of form I. [Pg.193]

The electron density in transition metal complexes is of unusual interest. The chemistry of transition metal compounds is of relevance for catalysis, for solid-state properties, and for a large number of key biological processes. The importance of transition-metal-based materials needs no further mention after the discovery of the high-Tc superconducting cuprates, the properties of which depend critically on the electronic structure in the CuOz planes. [Pg.211]

The first chemical transformations carried out with Cjq were reductions. After the pronounced electrophilicity of the fullerenes was recognized, electron transfer reactions with electropositive metals, organometallic compounds, strong organic donor molecules as well as electrochemical and photochemical reductions have been used to prepare fulleride salts respectively fulleride anions. Functionalized fulleride anions and salts have been mostly prepared by reactions with carbanions or by removing the proton from hydrofullerenes. Some of these systems, either functionalized or derived from pristine Cjq, exhibit extraordinary solid-state properties such as superconductivity and molecular ferromagnetism. Fullerides are promising candidates for nonlinear optical materials and may be used for enhanced photoluminescence material. [Pg.49]

As seen in the first chapter, the study of the solid state properties of actinides and their compounds is advancing rapidly, since theoretical and experimental solid state physicists are increasingly interested in the pecuUar behaviour of 5f electrons, which cause solid state properties similar to those of d transition elements in the first half of the series and to those of 4f lanthanides in the second half ... [Pg.58]

Cyanide complexes of platinum occur most commonly in the divalent state, although there has been increasing interest in the complexes formed with platinum in a higher oxidation state. Among the complexes most recently studied have been the mixed valent complexes where platinum cyanides in the divalent state are partially oxidized. These complexes form one-dimensional stacks with Pt-Pt interactions. In the solid state these materials show interesting electrical conductivity properties, and these compounds are discussed by Underhill in Chapter 60. In this section the preparative procedures and spectroscopy of the complexes will be covered, but for solid state properties the reader is referred to Chapter 60. [Pg.375]

This volume of the Handbook illustrates the rich variety of topics covered by rare earth science. Three chapters are devoted to the description of solid state compounds skutteru-dites (Chapter 211), rare earth-antimony systems (Chapter 212), and rare earth-manganese perovskites (Chapter 214). Two other reviews deal with solid state properties one contribution includes information on existing thermodynamic data of lanthanide trihalides (Chapter 213) while the other one describes optical properties of rare earth compounds under pressure (Chapter 217). Finally, two chapters focus on solution chemistry. The state of the art in unraveling solution structure of lanthanide-containing coordination compounds by paramagnetic nuclear magnetic resonance is outlined in Chapter 215. The potential of time-resolved, laser-induced emission spectroscopy for the analysis of lanthanide and actinide solutions is presented and critically discussed in Chapter 216. [Pg.666]

Solid-State Properties (Electronic, Magnetic, Optical) of Dithiolene Complex-Based Compounds... [Pg.399]

SOLID-STATE PROPERTIES OF DITHIOLENE COMPLEX-BASED COMPOUNDS 401... [Pg.401]


See other pages where Compound Solid-state Properties is mentioned: [Pg.270]    [Pg.271]    [Pg.273]    [Pg.275]    [Pg.305]    [Pg.270]    [Pg.271]    [Pg.273]    [Pg.275]    [Pg.305]    [Pg.144]    [Pg.53]    [Pg.98]    [Pg.239]    [Pg.249]    [Pg.216]    [Pg.5]    [Pg.812]    [Pg.264]    [Pg.14]    [Pg.184]    [Pg.31]    [Pg.64]    [Pg.76]    [Pg.86]    [Pg.309]    [Pg.87]    [Pg.181]    [Pg.138]    [Pg.56]    [Pg.450]    [Pg.46]   


SEARCH



Compound, compounds properties

Solid compound

Solid-state properties

Solids properties

State property

State) compounds

© 2024 chempedia.info