Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomorphous compounds

Hf4(0H)s(Cr04)4 H20 Cr—O (av), 1.65 A, chains of edge-sharing pentagonal bipyramids of HfOg interconnected by Cr04 tetrahedra Zr compound isomorphous 8... [Pg.942]

Chromium(III) iodide is a black, crystalline compound, isomorphous with chromium(III) chloride. When pure,... [Pg.129]

Phosphuretted hydrogen is neither acid nor alkaline but it seems to have alkaline tendencies, since it combines with hydri-odic acid, forming a neutral crystalline compound, isomorphous with hydriodate of ammonia. It also combines with several metallic chlorides, forming compounds analogous to those produced by ammonia with the same chlorides. Rose, who has described these compounds, points out a considerable analogy between phosphuretted hydrogen and ammonia. [Pg.114]

F-Erythritol (a competitive growth inhibitor of the Bipuoella group) was a crystalline compound, isomorphous with erythritol itself, whose structure had to be established by X-ray diffraction analysis. 2F-Ribitol likewise was obtained by a similar synthetic route. [Pg.3]

In the systems formed with A-elements - all transition metals, except for Be (in the Yb-Be system only YbBe is known to exist)-as long as the concentration of the X element does not reach a certain value, Yb maintains its divalency and correspondingly does not alloy with X, giving rise to wide liquid immiscibility ranges. Above this critical concentration, which depends on X, Yb becomes trivalent and forms compounds isomorphous with those of the neighboring lanthanides (landelli and Palenzona, 1976). This critical concentration increases regularly from left to right and down in the periodic system. [Pg.50]

In general, the chemistry of inorganic lead compounds is similar to that of the alkaline-earth elements. Thus the carbonate, nitrate, and sulfate of lead are isomorphous with the corresponding compounds of calcium, barium, and strontium. In addition, many inorganic lead compounds possess two or more crystalline forms having different properties. For example, the oxides and the sulfide of bivalent lead are frequendy colored as a result of their state of crystallisation. Pure, tetragonal a-PbO is red pure, orthorhombic P PbO is yeUow and crystals of lead sulfide, PbS, have a black, metallic luster. [Pg.67]

Alkali Metal Perchlorates. The anhydrous salts of the Group 1 (lA) or alkah metal perchlorates are isomorphous with one another as well as with ammonium perchlorate. Crystal stmctures have been determined by optical and x-ray methods (38). With the exception of lithium perchlorate, the compounds all exhibit dimorphism when undergoing transitions from rhombic to cubic forms at characteristic temperatures (33,34). Potassium perchlorate [7778-74-7] KCIO, the first such compound discovered, is used in pyrotechnics (qv) and has the highest percentage of oxygen (60.1%). [Pg.66]

There are a considerable number of stable crystalline salts of the ammonium ion [14798-03-9] NH. Several are of commercial importance because of large scale consumption in fertiliser and industrial markets. The ammonium ion is about the same size as the potassium and mbidium ions, so these salts are often isomorphous and have similar solubiUty in water. Compounds in which the ammonium ion is combined with a large, uninegative anion are usually the most stable. Ammonium salts containing a small, highly charged anion generally dissociate easily into ammonia (qv) and the free acid (1). At about 300°C most simple ammonium salts volatilize with dissociation, for example... [Pg.362]

Silicon (3), which resembles metals in its chemical behavior, generally has a valence of +4. In a few compounds it exhibits a +2 valence, and in silicides it exists as a negative ion and largely violates the normal valency rules. Silicon, carbon, germanium, tin, and lead comprise the Group 14 (IVA) elements. Silicon and carbon form the carbide, SiC (see Carbides). Silicon and germanium are isomorphous and thus mutually soluble in all proportions. Neither tin nor lead reacts with silicon. Molten silicon is immiscible in both molten tin and molten lead. [Pg.525]

The important (3-stabilizing alloying elements are the bcc elements vanadium, molybdenum, tantalum, and niobium of the P-isomorphous type and manganese, iron, chromium, cobalt, nickel, copper, and siUcon of the P-eutectoid type. The P eutectoid elements, arranged in order of increasing tendency to form compounds, are shown in Table 7. The elements copper, siUcon, nickel, and cobalt are termed active eutectoid formers because of a rapid decomposition of P to a and a compound. The other elements in Table 7 are sluggish in their eutectoid reactions and thus it is possible to avoid compound formation by careful control of heat treatment and composition. The relative P-stabilizing effects of these elements can be expressed in the form of a molybdenum equivalency. Mo (29) ... [Pg.101]

Bismuth Trifluoride. Bismuth(III) duoride is a white to grey-white powder, density 8.3 g/mL, that is essentially isomorphous with orthorhombic YF, requiring nine-coordination about the bismuth (11). It has been suggested that BiF is best considered an eight-coordinate stmcture with the deviation from the YF stmcture resulting from stereochemical activity of the bismuth lone-pair electrons. In accord with its stmcture, the compound is the most ionic of the bismuth haUdes. It is almost insoluble in water (5.03 0.05 x 10 M at pH 1.15) and dissolves only to the extent of 0.010 g per 100 g of anhydrous HF at 12.4°C. [Pg.128]

Bismuth Trisulfate. Bismuth(III) sulfate [7787-68-0], Bi2(S0 3, is a colorless, very hygroscopic compound that decomposes above 405°C to yield bismuthyl salts and Bi202. The compound hydrolyzes slowly in cold water and rapidly in hot water to the yellow bismuthyl sulfate [12010-64-9], (Bi0)2S04. The normal sulfate is isomorphous with the sulfates of yttrium, lanthanum, and praseodymium. [Pg.130]

Ghromium(II) Compounds. The Cr(II) salts of nonoxidizing mineral acids are prepared by the dissolution of pure electrolytic chromium metal ia a deoxygenated solution of the acid. It is also possible to prepare the simple hydrated salts by reduction of oxygen-free, aqueous Cr(III) solutions using Zn or Zn amalgam, or electrolyticaHy (2,7,12). These methods yield a solution of the blue Cr(H2 0)g cation. The isolated salts are hydrates that are isomorphous with and compounds. Examples are chromous sulfate heptahydrate [7789-05-17, CrSO 7H20, chromous chloride hexahydrate... [Pg.134]

An unusual crystal arrangement is exhibited by the isomorphous compounds CrCl and Crl. The close-packed cubic array of Cl or I atoms has two-thirds of the octahedral holes between every other pair of chlorine or iodine planes filled with chromium atoms. Alternate layers of the halogen compounds are held together by van der Waals forces (39,40). [Pg.135]

The neutralized, alumina-free sodium chromate solution may be marketed as a solution of 40° Bh (specific gravity = 1.38), evaporated to dryness, or crystallized to give a technical grade of sodium chromate or sodium chromate tetrahydrate [1003-82-9] Na2Cr04 4H2O. If the fuel for the kilns contains sulfur, the product contains sodium sulfate as an impurity. This compound is isomorphous with sodium chromate and hence difficult to separate. High purity sodium chromate must be made from purified sodium dichromate. [Pg.138]

TII3 is an intriguing compound which is isomorphous with NH4I3 and Csly (p. 836) it therefore contains the linear I3 ion and is a compound of Tl rather than Tl . It is obtained as black crystals by evaporating an equimolar solution of Til and I2 in concentrated aqueous HI. The formulation Tl (l3 ) rather than Tl (I )y is consistent with the standard reduction potentials °(T1"VT1 )1.26 V and °(il2/I )-(-0.54 V,... [Pg.239]

One of the most important parameters that defines the structure and stability of inorganic crystals is their stoichiometry - the quantitative relationship between the anions and the cations [134]. Oxygen and fluorine ions, O2 and F, have very similar ionic radii of 1.36 and 1.33 A, respectively. The steric similarity enables isomorphic substitution of oxygen and fluorine ions in the anionic sub-lattice as well as the combination of complex fluoride, oxyfluoride and some oxide compounds in the same system. On the other hand, tantalum or niobium, which are the central atoms in the fluoride and oxyfluoride complexes, have identical ionic radii equal to 0.66 A. Several other cations of transition metals are also sterically similar or even identical to tantalum and niobium, which allows for certain isomorphic substitutions in the cation sublattice. [Pg.59]

The variation that exists in the 0 F ratio of MMe6Oi5F-type compounds enables isomorphic replacement of alkali metal cations by other cations with appropriate radii. For instance, a copper-containing compound, Cuo.6Nb6Oi4 6F( 4, which crystallizes in a LiNbeOisF type structure, was obtained [255]. [Pg.108]

Structural Studies. X-ray powder diffraction patterns for I indicate that the crystal structure is isomorphous to Zr2(0H)2-(SOO3 (H20)>. Figure 1 depicts the structure of the zirconium compound (5). The structure of I is identical to that of the zirconium analog except for variations in bond distances and angles which do not affect the overall structure. We have as yet been unable to obtain single crystals of I which are suitable for X-ray diffraction studies. [Pg.58]

The crystal structures of Hf 2 (OH) 2 (S0O 3 (H2O) i, (14) and Ce2(0H)2(S0i,)3 (H20)it (14) also have been determined and found to be isomorphous to the zirconium compound. The cell constants for this series of four isomorphous compounds reflect the effect of the ionic radii on the dimensions of the unit cell. The values for these cell constants are in Table II. Thus, the cell constants for the zirconium and hafnium compounds are nearly identical and smaller than the cell constants for the cerium and plutonium compounds which are also nearly identical. This trend is exactly that followed by the ionic radii of these elements. [Pg.58]

Figure 1. The crystal structure of Zr2(0H)2(SO4)3(H2O)4> reprinted with permission from Ref. 5, copyright 1966, American Chemical Society. Zirconium atoms are shown as solid circles, oxygen atoms as open circles. The Pu compound is isomorphous, Zr being replaced by Pu. la shows the manner in which the bridging sulfates link Pu atoms to form layers, lb shows the manner in which layers are linked through the double hydroxide bridges. Figure 1. The crystal structure of Zr2(0H)2(SO4)3(H2O)4> reprinted with permission from Ref. 5, copyright 1966, American Chemical Society. Zirconium atoms are shown as solid circles, oxygen atoms as open circles. The Pu compound is isomorphous, Zr being replaced by Pu. la shows the manner in which the bridging sulfates link Pu atoms to form layers, lb shows the manner in which layers are linked through the double hydroxide bridges.

See other pages where Isomorphous compounds is mentioned: [Pg.226]    [Pg.232]    [Pg.5]    [Pg.2781]    [Pg.355]    [Pg.30]    [Pg.291]    [Pg.226]    [Pg.232]    [Pg.5]    [Pg.2781]    [Pg.355]    [Pg.30]    [Pg.291]    [Pg.302]    [Pg.32]    [Pg.129]    [Pg.22]    [Pg.202]    [Pg.237]    [Pg.326]    [Pg.100]    [Pg.475]    [Pg.136]    [Pg.61]    [Pg.99]    [Pg.239]    [Pg.477]    [Pg.1014]    [Pg.1058]    [Pg.1084]    [Pg.1120]    [Pg.1140]    [Pg.1206]    [Pg.1215]    [Pg.112]    [Pg.88]   
See also in sourсe #XX -- [ Pg.448 ]




SEARCH



Isomorphic

Isomorphic compounds

Isomorphic compounds

Isomorphism

Isomorphous

Isomorphs

© 2024 chempedia.info