Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexity of flow

Spreading for some commercial instruments. While instrument bandspreading is related to the extra-column volume, it does not correlate exactly due to the complexity of flow through tubing, connections, injection systems, and detector flow cells. [Pg.801]

The characteristics and complexity of flow pattern are such that most flows are described by a set of empirical or semi-empirical equations. These relate the pressure drop in the flow system as a function of flow rate, pipe geometry, and physical properties of the fluids. The aim in the design of fluid flow is to choose a line size and piping arrangement that achieve minimum capital and pumping costs. In addition, constraints on pressure drop and maximum allowable velocity in the process pipe should be maintained. These objectives require many trial and error computations, which can be performed well by a computer. [Pg.150]

Equations (7.1-45) and (7-1-46) show that the two-film theory predicts that the mass transfer coefficient is directly proportional to the molecular diffiisivity to the power unify. The complexity of flow normally prevents evaluation of Zf, but it will decrease with increasing turbulence. [Pg.413]

Most polymer blends are immiscible. Their flow is complex not only due to the presence of several phases having different rheological properties (as it will be demonstrated later, even in blends of two polymers the third phase, the interphase, must be taken into account), but also due to strain sensitivity of blend morphology. Such complexity of flow behavior can be best put in perspective by comparing it to flow of better understood systems, suspensions, emulsions, and block copolymers. [Pg.458]

Microreactors are developed for a variety of different purposes, specifically for applications that require high heat- and mass-transfer coefficients and well-defined flow patterns. The spectrum of applications includes gas and liquid flow as well as gas/liquid or liquid/liquid multiphase flow. The variety and complexity of flow phenomena clearly poses major challenges to the modeling approaches, especially when additional effects such as mass transfer and chemical kinetics have to be taken into account. However, there is one aspect that makes the modeling of microreactors in some sense much simpler than that of macroscopic equipment the laminarity of the flow. Typically, in macroscopic reactors the conditions are such that a turbulent flow pattern develops, thus making the use of turbulence models [1] necessary. With turbulence models the stochastic velocity fluctuations below the scale of grid resolution are accounted for in an effective manner, without the need to explicitly model the time evolution of these fine details of the flow field. Heat- and mass-transfer processes strongly depend on the turbulent velocity fluctuations, for this reason the accuracy of the turbulence model is of paramount importance for a reliable prediction of reactor performance. However, to the... [Pg.25]

Melt pressure may be considered a function of viscosity, since fluctuations in viscosity will result in a change in pressure. However, pressure will also be a function of throughput, disturbances in the extruder and complexities of flow such as elastic responses. As a result, control of viscosity in this way is difficult to achieve. [Pg.65]

The complexity of petroleum products raises the question of sample validity is the sample representative of the total flow The problem becomes that much more difficult when dealing with samples of heavy materials or samples coming from separations. The diverse chemical families in a petroleum cut can have very different physical characteristics and the homogeneous nature of the cut is often due to the delicate equilibrium between its components. The equilibrium can be upset by extraction or by addition of certain materials as in the case of the precipitation of asphaltenes by light paraffins. [Pg.28]

Polymers owe much of their attractiveness to their ease of processing. In many important teclmiques, such as injection moulding, fibre spinning and film fonnation, polymers are processed in the melt, so that their flow behaviour is of paramount importance. Because of the viscoelastic properties of polymers, their flow behaviour is much more complex than that of Newtonian liquids for which the viscosity is the only essential parameter. In polymer melts, the recoverable shear compliance, which relates to the elastic forces, is used in addition to the viscosity in the description of flow [48]. [Pg.2534]

Chaotic attractors are complicated objects with intrinsically unpredictable dynamics. It is therefore useful to have some dynamical measure of the strength of the chaos associated with motion on the attractor and some geometrical measure of the stmctural complexity of the attractor. These two measures, the Lyapunov exponent or number [1] for the dynamics, and the fractal dimension [10] for the geometry, are related. To simplify the discussion we consider tliree-dimensional flows in phase space, but the ideas can be generalized to higher dimension. [Pg.3059]

Characterization and influence of electrohydro dynamic secondary flows on convective flows of polar gases is lacking for most simple as well as complex flow geometries. Such investigations should lead to an understanding of flow control, manipulation of separating, and accurate computation of local heat-transfer coefficients in confined, complex geometries. The typical Reynolds number of the bulk flow does not exceed 5000. [Pg.496]

In practice, elimination of axial current flow requires relatively fine segmentation, eg, 1—2 cm, between electrodes, which means that a utihty-sized generator contains several hundred electrode pairs. Thus, one of the costs paid for the increased performance is the larger number of components and increased mechanical complexity compared to the two-terrninal Faraday generator. Another cost is incurred by the increased complexity of power collection, in that outputs from several hundred terminals at different potentials must be consoHdated into one set of terminals, either at an inverter or at the power grid. [Pg.416]

Flow Sheets. AH minerals processing operations function on the basis of a flow sheet depicting the flow of soHds and Hquids in the entire plant (6,13,14). The complexity of a flow sheet depends on the nature of the ore treated and the specifications for the final product. The basic operations in a flow sheet are size reduction (qv) (comminution) and/or size separation (see Separation, size), minerals separation, soHd—Hquid separation, and materials handling. The overaH flow sheet depends on whether the specification for the final mineral product is size, chemical composition, ie, grade, or both. Products from a quarry, for example, may have a size specification only, whereas metal concentrates have a grade specification. [Pg.394]

Reinforced Thermoplastic Sheet. This process uses precombined sheets of thermoplastic resin and glass fiber reinforcement, cut into blanks to fit the weight and size requirements of the part to be molded. The blanks, preheated to a specified temperature, are loaded into the metal mold and the material flows under mol ding pressure to fiU the mold. The mold is kept closed under pressure until the temperature of the part has been reduced, the resin solidified, and demolding is possible. Cycle time, as with thermosetting resins, depends on the thickness of the part and the heat distortion temperature of the resin. Mol ding pressures are similar to SMC, 10—21 MPa (1500—3000 psi), depending on the size and complexity of the part. [Pg.96]

Deflocculation and Slurry Thinning. Sihcates are used as deflocculants, ie, agents that maintain high sohds slurry viscosities at increased sohds concentrations. Soluble sihcates suppress the formation of ordered stmctures within clay slurries that creates resistance to viscous flow within the various sytems. Laboratory trials are necessary, because the complexity of the systems precludes the use of a universal deflocculant. Sihcates are employed in thinning of limestone or clay slurries used in the wet-process manufacture of cements and bricks, clay refining, and petroleum drilling muds (see also... [Pg.13]


See other pages where Complexity of flow is mentioned: [Pg.3]    [Pg.125]    [Pg.259]    [Pg.358]    [Pg.741]    [Pg.4269]    [Pg.318]    [Pg.389]    [Pg.324]    [Pg.430]    [Pg.3]    [Pg.125]    [Pg.259]    [Pg.358]    [Pg.741]    [Pg.4269]    [Pg.318]    [Pg.389]    [Pg.324]    [Pg.430]    [Pg.1099]    [Pg.616]    [Pg.9]    [Pg.192]    [Pg.143]    [Pg.345]    [Pg.279]    [Pg.95]    [Pg.100]    [Pg.102]    [Pg.495]    [Pg.518]    [Pg.308]    [Pg.351]    [Pg.402]    [Pg.78]    [Pg.510]    [Pg.368]    [Pg.369]    [Pg.411]   
See also in sourсe #XX -- [ Pg.623 ]




SEARCH



Complex flow

Kinds of Distillation Complexes with Thermal Coupling Flows

Numerical solution, of complex flow models

The Structure Factor of Flowing Complex Liquid Mixtures

Turbulent flow in canopies on complex topography and the effects of stable stratification

© 2024 chempedia.info