Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexes with dissociation

Consider the enzyme-catalyzed and noncatalyzed transformation of the ground state substrate to its transition state structure. We can view this in terms of a thermodynamic cycle, as depicted in Figure 2.4. In the absence of enzyme, the substrate is transformed to its transition state with rate constant /cM..M and equilibrium dissociation constant Ks. Alternatively, the substrate can combine with enzyme to form the ES complex with dissociation constant Ks. The ES complex is then transformed into ESt with rate constant kt , and dissociation constant The thermodynamic cycle is completed by the branch in which the free transition state molecule, 5 binds to the enzyme to form ESX, with dissociation constant KTX. Because the overall free energy associated with transition from S to ES" is independent of the path used to reach the final state, it can be shown that KTX/KS is equal to k, Jkail (Wolfenden,... [Pg.32]

This method is primarily meant for weak complexes (with dissociation constants fQj in the range of 10 to 10 M) and utilizes STD NMR inten-... [Pg.51]

Although extraction of lipids from membranes can be induced in atomic force apparatus (Leckband et al., 1994) and biomembrane force probe (Evans et al., 1991) experiments, spontaneous dissociation of a lipid from a membrane occurs very rarely because it involves an energy barrier of about 20 kcal/mol (Cevc and Marsh, 1987). However, lipids are known to be extracted from membranes by various enzymes. One such enzyme is phospholipase A2 (PLA2), which complexes with membrane surfaces, destabilizes a phospholipid, extracts it from the membrane, and catalyzes the hydrolysis reaction of the srir2-acyl chain of the lipid, producing lysophospholipids and fatty acids (Slotboom et al., 1982 Dennis, 1983 Jain et al., 1995). SMD simulations were employed to investigate the extraction of a lipid molecule from a DLPE monolayer by human synovial PLA2 (see Eig. 6b), and to compare this process to the extraction of a lipid from a lipid monolayer into the aqueous phase (Stepaniants et al., 1997). [Pg.50]

The concentration of fluoride in drinking water may be determined indirectly by its ability to form a complex with zirconium. In the presence of the dye SPADNS, solutions of zirconium form a reddish colored compound, called a lake, that absorbs at 570 nm. When fluoride is added, the formation of the stable ZrFe complex causes a portion of the lake to dissociate, decreasing the absorbance. A plot of absorbance versus the concentration of fluoride, therefore, has a negative slope. [Pg.396]

Size Isomers. In solution, hGH is a mixture of monomer, dimer, and higher molecular weight oligomers. Furthermore, there are aggregated forms of hGH found in both the pituitary and in the circulation (16,17). The dimeric forms of hGH have been the most carefully studied and there appear to be at least three distinct types of dimer a disulfide dimer connected through interchain disulfide bonds (8) a covalent or irreversible dimer that is detected on sodium dodecylsulfate- (SDS-)polyacrylamide gels (see Electroseparations, Electrophoresis) and is not a disulfide dimer (19,20) and a noncovalent dimer which is easily dissociated into monomeric hGH by treatment with agents that dismpt hydrophobic interactions in proteins (21). In addition, hGH forms a dimeric complex with ( 2). Scatchard analysis has revealed that two ions associate per hGH dimer in a cooperative... [Pg.196]

Himdin [8001-27-2] is a polypeptide of 66 amino acids found ia the saUvary gland secretions of the leech Himdo medicinalis (45). It is a potent inhibitor of thrombin and biads to y-thrombia with a dissociation constant of 0.8 x 10 ° M to 2.0 x lO " M. Himdin forms a stable noncovalent complex with free and bound thrombin completely iadependent of AT-III. This material has now been cloned and expressed ia yeast cells (46,47). Its antigenic poteatial ia humans remains to be estabUshed. [Pg.178]

This scheme represents an alkyne-bromine complex as an intermediate in all alkyne brominations. This is analogous to the case of alkenes. The complex may dissociate to a inyl cation when the cation is sufficiently stable, as is the case when there is an aryl substituent. It may collapse to a bridged bromonium ion or undergo reaction with a nucleophile. The latta is the dominant reaction for alkyl-substituted alkynes and leads to stereospecific anti addition. Reactions proceeding through vinyl cations are expected to be nonstereospecific. [Pg.375]

Most other studies have indicated considerably more complex behavior. The rate data for reaction of 3-methyl-l-phenylbutanone with 5-butyllithium or n-butyllithium in cyclohexane can be fit to a mechanism involving product formation both through a complex of the ketone with alkyllithium aggregate and by reaction with dissociated alkyllithium. Evidence for the initial formation of a complex can be observed in the form of a shift in the carbonyl absorption band in the IR spectrum. Complex formation presumably involves a Lewis acid-Lewis base interaction between the carbonyl oxygen and lithium ions in the alkyllithium cluster. [Pg.464]

Adding an excess of free metabolite diat will compete for the bonnd protein dissociates die protein from die chromatographic matrix. The protein pa.s.ses ont of the colnmn complexed with free metabolite. [Pg.157]

Ihb = 1, whereas Ihb = 0 when it is inert to hydrogen bonding. Since —AG,° is proportional to log 1/Kd, where Kd is the dissociation constant of a cyclodextrin complex with a guest molecule, we can derive a quantitative structure-reactivity relationship as shown, for example, in Eq. 4 ... [Pg.68]

Nishioka and Fujita 78> have determined the Kd values for a- and P-cyclodextrin complexes with m- and p-substituted phenols at pH 7.0. Taking into account the directionality in inclusion of a guest molecule, they assumed three and two probable orientational isomers for the cyclodextrin complexes with m- and p-substituted phenols respectively (Fig. 6). Then the observed Kd values were divided into two or three terms corresponding to the dissociation of the orientational isomers involved (Eqs. 16, 17) ... [Pg.73]

Kx, standard pharmacologic convention for the equilibrium dissociation constant of an agonist-receptor complex with units of M. It is the concentration that occupies half the receptor population at equilibrium. It also can be thought of as the reciprocal of affinity. [Pg.280]

This complex ion dissociates to give silver ions, since the addition of sulphide ions yields a precipitate of silver sulphide (solubility product 1.6 x 10 49 mol3 L 3), and also silver is deposited from the complex cyanide solution upon electrolysis. The complex ion thus dissociates in accordance with the equation ... [Pg.50]

This shows that the pM value of the solution is fixed by the value of K and the ratio of complex-ion concentration to that of the free ligand. If more of M is added to the solution, more complex will be formed and the value of pM will not change appreciably. Likewise, if M is removed from the solution by some reaction, some of the complex will dissociate to restore the value of pM. This recalls the behaviour of buffer solutions encountered with acids and bases (Section 2.20), and by analogy, the complex-ligand system may be termed a metal ion buffer. [Pg.53]

The stability of the enzyme-polymer complex and its dissociation upon the variation of pH depends on the structural and other physico-chemical properties of CP and enzyme molecule. Thus, a Biocarb-T heteroreticular biosorbent (Fig. 26) is characterized by a stability of its complex with ot-amylase (under the condition of its stabilization) in acid solutions and a complete dissociation of the complex during isolation of the active enzyme at pH 7-8. [Pg.35]

Hyperphosphorylation of ERAK-1 by itself and ERAK-4 causes ERAK-1 to dissociate from the membrane-bound complex. Tumour necrosis factor (TNF) receptor-associated factor-6 ( TRAF-6), a cytoplasmic protein, is activated by ERAK-1 and with TAB-2, another cytoplasmic protein, activates transforming growth factor-P (TFG-P)-activating kinase (TAK-1). During this process both TRAF-6 and TAK-1 become ubiquitinated. TAK-1 then promotes activation of the IkB kinases, or the IKK family, EKKa and EKK 3 (found in a complex with NFicB-essential modulator [NEMO]), which phosphorylate the IkB family, notably IkB-u. IkB-u is an inhibitor of NFkB as it sequesters NFkB in an... [Pg.1208]

With regard to the mechanism of these Pd°-catalyzed reactions, little is known in addition to what is shown in Scheme 10-62. In our opinion, the much higher yields with diazonium tetrafluoroborates compared with the chlorides and bromides, and the low yields and diazo tar formation in the one-pot method using arylamines and tert-butyl nitrites (Kikukawa et al., 1981 a) indicate a heterolytic mechanism for reactions under optimal conditions. The arylpalladium compound is probably a tetra-fluoroborate salt of the cation Ar-Pd+, which dissociates into Ar+ +Pd° before or after addition to the alkene. An aryldiazenido complex of Pd(PPh3)3 (10.25) was obtained together with its dediazoniation product, the corresponding arylpalladium complex 10.26, in the reaction of Scheme 10-64 by Yamashita et al. (1980). Aryldiazenido complexes with compounds of transition metals other than Pd are discussed in the context of metal complexes with diazo compounds (Zollinger, 1995, Sec. 10.1). [Pg.253]


See other pages where Complexes with dissociation is mentioned: [Pg.235]    [Pg.215]    [Pg.265]    [Pg.50]    [Pg.184]    [Pg.235]    [Pg.215]    [Pg.265]    [Pg.50]    [Pg.184]    [Pg.178]    [Pg.44]    [Pg.134]    [Pg.1144]    [Pg.300]    [Pg.98]    [Pg.75]    [Pg.278]    [Pg.345]    [Pg.384]    [Pg.481]    [Pg.335]    [Pg.479]    [Pg.883]    [Pg.1090]    [Pg.100]    [Pg.68]    [Pg.69]    [Pg.60]    [Pg.732]    [Pg.105]    [Pg.29]    [Pg.568]    [Pg.845]    [Pg.891]    [Pg.892]    [Pg.1085]    [Pg.1140]    [Pg.8]   
See also in sourсe #XX -- [ Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 , Pg.103 , Pg.104 , Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.119 ]




SEARCH



Complexes, dissociation

© 2024 chempedia.info