Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexes trioxide

The sulphonic acids are usually prepared by the action of sulphuric acid upon a compound. The concentration of the acid and the temperature of reaction are varied according to the reactivity of the compound. Often oleum is used or even chiorosulphonic acid. Alternatively sulphur trioxide complexed to pyridine or dioxan can be used with reactive substrates. Aminosulphonic acids such as sulphanilic and naphthionic acids are most conveniently prepared by heating the sulphate of the amine at ISO C. [Pg.378]

It is extensively used industrially as a catalyst, notably in the oxidation of sulphur dioxide to the trioxide in sulphuric acid manufacture. It is an essentially acidic oxide, dissolving in alkalis to give vanadates however, addition of acid converts the anionic vanadate species to cationic species, by processes which are very complex, but which overall amount to the following ... [Pg.374]

According to the second mechanism the polymer and antimony trioxide form a catalytic complex. The halogen flame retardant then reacts with the complex and expels antimony tribromide. [Pg.456]

Bitumen Ionomers. Moisture-resistant asphalts (qv) have been prepared by reaction of metal oxides with acid-functionalized bitumens (75). Maleic anhydride or sulfur trioxide/trimethylamine complexes have been used successfully for introduction of acid groups into asphaltic bitumens. [Pg.409]

This reaction is strongly exothermic and proceeds spontaneously from left to right for most common metallic sulfides under normal roasting conditions, ie, in air, because P q + Pq = - 20 kPa (0.2 atm) at temperatures ranging from 650 to 1000°C. The physical chemistry of the roasting process is more complex than indicated by equation 3 alone. Sulfur trioxide is also formed,... [Pg.165]

Molybdenum(III) complexes include the molybdenum trihaUdes. Molybdenum trichoride [13478-18-7], trifluoride [20193-58-2], tribromide [13446-57-6], and ttiiodide [14055-75-5] are all known. The oxide dimolybdenum trioxide [1313-29-7], M02O2, and the seldom-studied sulfide analogue [12033-33-9], M02S2, are formally trivalent. [Pg.472]

Sulfur trioxide reactivity can also be moderated through the use of SO adducts. The reactivity of such complexes is inversely proportional to their stabihty, and consequentiy they can be selected for a wide variety of conditions. Whereas moderating SO reactivity by adducting agents is generally beneficial, the agents add cost and may contribute to odor and possible toxicity problems in derived products. CeUulosic material has been sulfated with SO.—trimethyl amine adduct in aqueous media at 0 to 5°C (16). Sulfur trioxide—triethyl phosphate has been used to sulfonate alkenes to the corresponding alkene sulfonate (17). Sulfur trioxide—pyridine adduct sulfates oleyl alcohol with no attack of the double bond (18). [Pg.77]

Sulfonated polyalkenes were prepared by using a triethyl phosphate—sulfur trioxide complex as the sulfonating reagent along with a solvent at low temperature. Sulfonation takes place at the a-position of the double bond with no cross-linking (222). [Pg.83]

Other Uses. Other uses include intermediate chemical products. Overall, these uses account for 15—20% of sulfur consumption, largely in the form of sulfuric acid but also some elemental sulfur that is used directly, as in mbber vulcanization. Sulfur is also converted to sulfur trioxide and thiosulfate for use in improving the efficiency of electrostatic precipitators and limestone/lime wet flue-gas desulfurization systems at power stations (68). These miscellaneous uses, especially those involving sulfuric acid, are intimately associated with practically all elements of the industrial and chemical complexes worldwide. [Pg.126]

In TBP extraction, the yeUowcake is dissolved ia nitric acid and extracted with tributyl phosphate ia a kerosene or hexane diluent. The uranyl ion forms the mixed complex U02(N02)2(TBP)2 which is extracted iato the diluent. The purified uranium is then back-extracted iato nitric acid or water, and concentrated. The uranyl nitrate solution is evaporated to uranyl nitrate hexahydrate [13520-83-7], U02(N02)2 6H20. The uranyl nitrate hexahydrate is dehydrated and denitrated duting a pyrolysis step to form uranium trioxide [1344-58-7], UO, as shown ia equation 10. The pyrolysis is most often carried out ia either a batch reactor (Fig. 2) or a fluidized-bed denitrator (Fig. 3). The UO is reduced with hydrogen to uranium dioxide [1344-57-6], UO2 (eq. 11), and converted to uranium tetrafluoride [10049-14-6], UF, with HF at elevated temperatures (eq. 12). The UF can be either reduced to uranium metal or fluotinated to uranium hexafluoride [7783-81-5], UF, for isotope enrichment. The chemistry and operating conditions of the TBP refining process, and conversion to UO, UO2, and ultimately UF have been discussed ia detail (40). [Pg.318]

Antimony trioxide is insoluble in organic solvents and only very slightly soluble in water. The compound does form a number of hydrates of indefinite composition which are related to the hypothetical antimonic(III) acid (antimonous acid). In acidic solution antimony trioxide dissolves to form a complex series of polyantimonic(III) acids freshly precipitated antimony trioxide dissolves in strongly basic solutions with the formation of the antimonate ion [29872-00-2] Sb(OH) , as well as more complex species. Addition of suitable metal ions to these solutions permits formation of salts. Other derivatives are made by heating antimony trioxide with appropriate metal oxides or carbonates. [Pg.202]

Complexes of BiF are almost unknown, but crystaUi2ation from a hot solution of ammonium duoride that has been saturated with freshly precipitated bismuth trioxide yields crystals of ammonium tetraduorobismuthate(III) [13600-76-5] NH BiF. This complex is readily decomposed by water. [Pg.128]

Bismuth trioxide forms numerous, complex, mixed oxides of varying composition when fused with CaO, SrO, BaO, and PbO. If high purity bismuth, lead, and copper oxides and strontium and calcium carbonates are mixed together with metal ratios Bi Pb Sn Ca Cu = 1.9 0.4 2 2 3 or 1.95 0.6 2 2 3 and calcined at 800—835°C, the resulting materials have the nominal composition Bi PbQ4Sr2Ca2Cu20 and Bi 25PbQgSr2Ca2Cu20 and become superconducting at about 110 K (25). [Pg.130]

Photochemical Reactions. The photochemistry of chlorine dioxide is complex and has been extensively studied (29—32). In the gas phase, the primary photochemical reaction is the homolytic fission of the chlorine—oxygen bond to form CIO and O. These products then generate secondary products such as chlorine peroxide, ClOO, chlorine, CI2, oxygen, O2, chlorine trioxide [17496-59-2] CI2O2, chlorine hexoxide [12442-63-6] and... [Pg.482]

In the presence of Eriedel-Crafts catalysts, gaseous ethyl chloride reacts with ben2ene at about 25°C to give ethylben2ene, three diethylben2enes, and other more complex compounds (12) (see Xylenes and ethylbenzene). Aromatic compounds can generally be ethylated by ethyl chloride in the presence of anhydrous aluminum chloride (see Eriedel-Crafts REACTIONS). Ethyl chloride combines directly with sulfur trioxide to give ethyl chlorosulfonate,... [Pg.2]

Both pyrrole and furan can be sulfonated in the 2-position by treatment with the pyridine-sulfur trioxide complex (Scheme 14). Furan can be further sulfonated by this reagent to give the 2,5-disulfonate. [Pg.50]

Sulfur trioxide pyridine complex [26412-87-3] M 159.2, m 155-165°, 175°. Wash the solid with a little CCI4 then H2O to remove traces of pyridine sulfate, and dry over P2O5 [Chem Ber 59 1166 1926 Synthesis 59 1979]. [Pg.479]

Other flame retardants and/or smoke suppressants can also be used such as magnesium hydroxide, magnesium carbonate, magnesium-zinc complexes and some tin-zinc compositions. Zinc oxide is a common ingredient in many rubber base formulations used as part of the curing system. At the same time, the action of zinc oxide is similar to that of antimony trioxide, but less effective. [Pg.638]

Phosphate fertilizer complexes often have sulfuric and phosphoric acid production facilities. Sulfuric acid is produced by burning molten sulfur in air to produce sulfur dioxide, which is then catalytically converted to sulfur trioxide for absorption in oleum. Sulfur dioxide can also be produced by roasting pyrite ore. Phosphoric acid is manufactured by adding sulfuric acid to phosphate rock. The... [Pg.68]

The use of dimethyl sulfoxide-acetic anhydride as a reagent for the oxidation of unhindered steroidal alcohols does not appear to be as promising due to extensive formation of by-products. However, the reagent is sufficiently reactive to oxidize the hindered 11 j -hydroxyl group to the 11-ketone in moderate yield. The use of sulfur trioxide-pyridine complex in dimethyl sulfoxide has also been reported. The results parallel those using DCC-DMSO but reaction times are much shorter and the work-up is more facile since the separation of dicyclohexylurea is not necessary. Allylic alcohols can be oxidized by this procedure without significant side reactions. [Pg.238]

If homolytic reaction conditions (heat and nonpolar solvents) can be avoided and if the reaction is conducted in the presence of a weak base, lead tetraacetate is an efficient oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. The yield of product is in many cases better than that obtained by oxidation with chromium trioxide. The reaction in pyridine is moderately slow the intial red pyridine complex turns to a yellow solution as the reaction progresses, the color change thus serving as an indicator. The method is surprisingly mild and free of side reactions. Thus 17a-ethinyl-17jS-hydroxy steroids are not attacked and 5a-hydroxy-3-ket-ones are not dehydrated. [Pg.242]

In a typical Knof procedure, 3jS-hydroxyandrost-5-en-17-one acetate is epoxidized with perbenzoic acid (or m-chloroperbenzoic acid ) to a mixture of 5a,6a- and 5)5,6)5-epoxides (75) in 99 % yield. Subsequent oxidation with aqueous chromium trioxide in methyl ethyl ketone affords the 5a-hydroxy-6-ketone (76) in 89% yield. Baeyer-Villiger oxidation of the hydroxy ketone (76) with perbenzoic acid (or w-chloroperbenzoic acid ) gives keto acid (77) in 96% yield as a complex with benzoic acid. The benzoic acid can be removed by sublimation or, more conveniently, by treating the complex with benzoyl chloride and pyridine to give the easily isolated )5-lactone (70) in 40% yield. As described in section III-A, pyrolysis of j5-lactone (70) affords A -B-norsteroid (71). Knof used this reaction sequence to prepare 3)5-hydroxy-B-norandrost-5-en-17-one acetate, B-noran-... [Pg.433]

Nitrosyl chloride [55], nitrosyl fluoride-hydrogen fluoride liquid complexes (NOF3HF, NOF 6HF) [56], nitrous acid-hydrogen fluoride solutions [57, 5 ] nitrogen trioxide (prepared in situ from nitric oxide and oxygen) [59] and rert-butyl nitrite-hydrogen fluoride-pyndine [60] have been substituted for sodium nitrite in the diazotization step... [Pg.278]

Sulfonation of the aromatic ring of l, 2, 2 -trifluorostyrene below 0 C does not give satisfactory yields with chlorosulfonic acid or a sulfur trioxide-dioxane complex Tar forms on heating In contrast, under similar conditions ipso substitution IS facile at the position of a trialkylsilyl or -stannyl group Thus, 4-trimethyl-silyl-T 2, 2 D-trifluorostyrene affords the corresponding trimethylsilyl sulfonate [20] (equation 9)... [Pg.406]


See other pages where Complexes trioxide is mentioned: [Pg.319]    [Pg.50]    [Pg.257]    [Pg.26]    [Pg.469]    [Pg.95]    [Pg.110]    [Pg.389]    [Pg.324]    [Pg.129]    [Pg.150]    [Pg.46]    [Pg.57]    [Pg.229]    [Pg.229]    [Pg.230]    [Pg.230]    [Pg.231]    [Pg.231]    [Pg.388]    [Pg.496]   
See also in sourсe #XX -- [ Pg.1047 ]




SEARCH



Alcohols, primary trioxide complex

Amine-sulphur trioxide complexes

CHROMIUM TRIOXIDE-PYRIDINE COMPLEX, preparation in situ

Chromium trioxide 2.4- dimethylpentane-2,4-diol complex

Chromium trioxide 3.5- dimethylpyrazole complex

Chromium trioxide complex

Chromium trioxide-pyridine complex

Chromium trioxide-pyridine complex Collins reagent)

Chromium trioxide-pyridine complex oxidant

Chromium trioxide-pyridine complex preparation

Complex chromium trioxide-3,5-dimethylpyrazol

Molybdenum trioxide complexes

Nitrogen trioxide, complexes

Oxidation with Chromium Trioxide-Pyridine Complex

Pentane-2,4-diol, 2,4-dimethylchromium trioxide complex

Pentane-2,4-diol, 2,4-dimethylchromium trioxide complex alcohol oxidation

Pyrazole, 3,5-dimethylchromium trioxide complex

Pyrazole, 3,5-dimethylchromium trioxide complex alcohol oxidation

Pyrazole, 3,5-dimethylchromium trioxide complex allylic alcohol oxidation

Pyrazole, 3,5-dimethylchromium trioxide complex allylic oxidation

Pyrazole, 3,5-dimethylchromium trioxide complex pyridinium chlorochromate

Pyridine complex with chromium trioxide (Collins

Pyridine sulfur trioxide complex ring opening

Pyridine sulphur trioxide complex

Selenium trioxide complexes

Sulfur trioxide -dioxane complex

Sulfur trioxide complexes

Sulfur trioxide pyridine complex

Sulfur trioxide-pyridine complex/DMSO

With chromium trioxide-pyridine complex

© 2024 chempedia.info