Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexes asymmetric epoxidation

Shitama H, Katsuki T (2007) Synthesis of metal-(pentadentate-salen) complexes asymmetric epoxidation with aqueous hydrogen peroxide and asymmetric cyclopropanation (salenH(2) N,N-bis(salicylidene)ethylene-1,2-diamine). Chem Eur J 13 4849 858... [Pg.36]

Using peripherally modified PAMAM dendrimer-supported chiral salen Mn(III) complex, asymmetric epoxidation of unfunctionaUzed olefins was performed. Modification of dendrimer was achieved through reaction of the terminal primary amion group of three generations of PAMAM dendrimer, (G , n = 1,2,3)... [Pg.192]

Egami, H., Oguma, T. and Katsuki, T. (2010). Oxidation Catalysis of Nb(Salan) Complexes Asymmetric Epoxidation of Ally lie Alcohols Using Aqueous Hydrogen Peroxide as an OxidanL J. Am. Chem. Soc., 132, pp. 5886-5895. [Pg.756]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

Transition metal-catalyzed epoxidations, by peracids or peroxides, are complex and diverse in their reaction mechanisms (Section 5.05.4.2.2) (77MI50300). However, most advantageous conversions are possible using metal complexes. The use of t-butyl hydroperoxide with titanium tetraisopropoxide in the presence of tartrates gave asymmetric epoxides of 90-95% optical purity (80JA5974). [Pg.36]

The emergence of the powerful Sharpless asymmetric epoxida-tion (SAE) reaction in the 1980s has stimulated major advances in both academic and industrial organic synthesis.14 Through the action of an enantiomerically pure titanium/tartrate complex, a myriad of achiral and chiral allylic alcohols can be epoxidized with exceptional stereoselectivities (see Chapter 19 for a more detailed discussion). Interest in the SAE as a tool for industrial organic synthesis grew substantially after Sharpless et al. discovered that the asymmetric epoxidation process can be conducted with catalytic amounts of the enantiomerically pure titanium/tartrate complex simply by adding molecular sieves to the epoxidation reaction mix-... [Pg.345]

A breakthrough in the area of asymmetric epoxidation came at the beginning of the 1990s, when the groups of Jacobsen and Katsuki more or less simultaneously discovered that chiral Mn-salen complexes (15) catalyzed the enantioselective formation of epoxides [71, 72, 73], The discovery that simple achiral Mn-salen complexes could be used as catalysts for olefin epoxidation had already been made... [Pg.204]

Asymmetric epoxidation of olefins with ruthenium catalysts based either on chiral porphyrins or on pyridine-2,6-bisoxazoline (pybox) ligands has been reported (Scheme 6.21). Berkessel et al. reported that catalysts 27 and 28 were efficient catalysts for the enantioselective epoxidation of aryl-substituted olefins (Table 6.10) [139]. Enantioselectivities of up to 83% were obtained in the epoxidation of 1,2-dihydronaphthalene with catalyst 28 and 2,6-DCPNO. Simple olefins such as oct-l-ene reacted poorly and gave epoxides with low enantioselectivity. The use of pybox ligands in ruthenium-catalyzed asymmetric epoxidations was first reported by Nishiyama et al., who used catalyst 30 in combination with iodosyl benzene, bisacetoxyiodo benzene [PhI(OAc)2], or TBHP for the oxidation of trons-stilbene [140], In their best result, with PhI(OAc)2 as oxidant, they obtained trons-stilbene oxide in 80% yield and with 63% ee. More recently, Beller and coworkers have reexamined this catalytic system, finding that asymmetric epoxidations could be perfonned with ruthenium catalysts 29 and 30 and 30% aqueous hydrogen peroxide (Table 6.11) [141]. Development of the pybox ligand provided ruthenium complex 31, which turned out to be the most efficient catalyst for asymmetric... [Pg.222]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

By studying the NMR spectra of the products, Jensen and co-workers were able to establish that the alkylation of (the presumed) [Co (DMG)2py] in methanol by cyclohexene oxide and by various substituted cyclohexyl bromides and tosylates occurred primarily with inversion of configuration at carbon i.e., by an 8 2 mechanism. A small amount of a second isomer, which must have been formed by another minor pathway, was observed in one case (95). Both the alkylation of [Co (DMG)2py] by asymmetric epoxides 129, 142) and the reduction of epoxides to alcohols by cobalt cyanide complexes 105, 103) show preferential formation of one isomer. In addition, the ratio of ketone to alcohol obtained in the reaction of epoxides with [Co(CN)5H] increases with pH and this has been ascribed to differing reactions with the hydride (reduction to alcohol) and Co(I) (isomerization to ketone) 103) (see also Section VII,C). [Pg.353]

Asymmetric epoxidation is another important area of activity, initially pioneered by Sharpless, using catalysts based on titanium tetraisoprop-oxide and either (+) or (—) dialkyl tartrate. The enantiomer formed depends on the tartrate used. Whilst this process has been widely used for the synthesis of complex carbohydrates it is limited to allylic alcohols, the hydroxyl group bonding the substrate to the catalyst. Jacobson catalysts (Formula 4.3) based on manganese complexes with chiral Shiff bases have been shown to be efficient in epoxidation of a wide range of alkenes. [Pg.117]

Scheme 6 Chiral iron complexes for the asymmetric epoxidation of olefins... Scheme 6 Chiral iron complexes for the asymmetric epoxidation of olefins...
Scheme 10 Asymmetric epoxidation of tra/ts-2-heptene with the chiral iron complex and H2O2... Scheme 10 Asymmetric epoxidation of tra/ts-2-heptene with the chiral iron complex and H2O2...
The synthesis, structure, and catalytic properties of a Pd11 complex with a partially hydrogenated ligand, shown in Figure 31, are described.393 This study provides the first asymmetric epoxidation of alkenes catalyzed by a palladium complex.393... [Pg.587]

Figure 31 A Pd11 complex with a partially hydrogenated ligand acts as a catalyst for asymmetric epoxidation. Figure 31 A Pd11 complex with a partially hydrogenated ligand acts as a catalyst for asymmetric epoxidation.
The insoluble polymer-supported Rh complexes were the first immobilized chiral catalysts.174,175 In most cases, however, the immobilization of chiral complexes caused severe reduction of the catalytic activity. Only a few investigations of possible causes have been made. The pore size of the insoluble support and the solvent may play important roles. Polymer-bound chiral Mn(III)Salen complexes were also used for asymmetric epoxidation of unfunctionalized olefins.176,177... [Pg.261]

This procedure was used for the asymmetric total synthesis of the steroid (+)-equilenin (7-7) [3]. Cyclopropylidene derivates 7-4 could be converted into the cyclobutanones 7-5 in good yields by applying an asymmetric epoxidation using the chiral (salen)Mnm complex 7-6 (Scheme 7.2) [4]. It is of interest that the demethoxy-lated substrate 7-4b led to 7-5b with a very high enantiomeric excess of 93%, whereas 7-4a gave 7-5a with only 78% ee. [Pg.494]

Vanadium-catalyzed asymmetric epoxidation has recently been re-examined with a newly designed chiral hydroxamic acid (3).43-45 The hydroxamic acid (3) forms a 1 1 complex with vanadium ions and induces high enantioselectivity (Scheme 6). [Pg.211]

These reports sparked off an extensive study of metalloporphyrin-catalyzed asymmetric epoxidation, and various optically active porphyrin ligands have been synthesized. Although porphyrin ligands can make complexes with many metal ions, mainly iron, manganese, and ruthenium complexes have been examined as the epoxidation catalysts. These chiral metallopor-phyrins are classified into four groups, on the basis of the shape and the location of the chiral auxiliary. Class 1 are C2-symmetric metalloporphyrins bearing the chiral auxiliary at the... [Pg.211]

Besides ruthenium porphyrins (vide supra), several other ruthenium complexes were used as catalysts for asymmetric epoxidation and showed unique features 114,115 though enantioselectivity is moderate, some reactions are stereospecific and treats-olefins are better substrates for the epoxidation than are m-olcfins (Scheme 20).115 Epoxidation of conjugated olefins with the Ru (salen) (37) as catalyst was also found to proceed stereospecifically, with high enantioselectivity under photo-irradiation, irrespective of the olefmic substitution pattern (Scheme 21).116-118 Complex (37) itself is coordinatively saturated and catalytically inactive, but photo-irradiation promotes the dissociation of the apical nitrosyl ligand and makes the complex catalytically active. The wide scope of this epoxidation has been attributed to the unique structure of (37). Its salen ligand adopts a deeply folded and distorted conformation that allows the approach of an olefin of any substitution pattern to the intermediary oxo-Ru species.118 2,6-Dichloropyridine IV-oxide (DCPO) and tetramethylpyrazine /V. V -dioxide68 (TMPO) are oxidants of choice for this epoxidation. [Pg.222]

Spectacular achievements in catalytic asymmetric epoxidation of olefins using chiral Mnm-salen complexes have stimulated a great deal of interest in designing polymeric analogs of these complexes and in their use as recyclable chiral catalysts. Techniques of copolymerization of appropriate functional monomers have been utilized to prepare these polymers, and both organic and inorganic polymers have been used as the carriers to immobilize these metal complexes.103... [Pg.454]

Figure 6.14. Chiral salen complexes used in the asymmetric epoxidation of alkenes.[7]... Figure 6.14. Chiral salen complexes used in the asymmetric epoxidation of alkenes.[7]...
Another interesting asymmetric epoxidation technique using metal catalysis involves the vanadium complexes of A-hydroxy-[2.2]paracyclophane-4-carboxylic amides (e.g., 19), which serve as catalysts for the epoxidation of allylic alcohols with f-butyl hydroperoxide as... [Pg.54]

The development of transition metal mediated asymmetric epoxidation started from the dioxomolybdcnum-/V-cthylcphcdrinc complex,4 progressed to a peroxomolybdenum complex,5 then vanadium complexes substituted with various hydroxamic acid ligands,6 and the most successful procedure may now prove to be the tetroisopropoxyltitanium-tartrate-mediated asymmetric epoxidation of allylic alcohols. [Pg.196]

Following the success with the titanium-mediated asymmetric epoxidation reactions of allylic alcohols, work was intensified to seek a similar general method that does not rely on allylic alcohols for substrate recognition. A particularly interesting challenge was the development of catalysts for enantioselective oxidation of unfunctionalized olefins. These alkenes cannot form conformationally restricted chelate complexes, and consequently the differentiation of the enan-tiotropic sides of the substrate is considerably more difficult. [Pg.237]

Konishi et al.97 synthesized porphyrin compound 127. As shown in Scheme 4-44, asymmetric epoxidation of prochiral olefins such as styrene derivatives and vinyl naphthalene by iodosobenzene has been achieved by using this porphyrin complex as the catalyst in the presence of imidazole. The optically active epoxides were obtained with moderate ee. [Pg.243]

Better results for the porphyrin complex-catalyzed asymmetric epoxidation of prochiral olefins were achieved by Naruta et al.98 using iron complexes of chiral binaphthalene or bitetralin-linked porphyrin 128 as chiral catalysts. As shown in Scheme 4-45, asymmetric epoxidation of styrene or its analogs provided the product with good ee. Even better results were obtained with substrates bearing electron-withdrawing substituents. [Pg.243]

Collman et al.99 reported the asymmetric epoxidation of terminal olefins catalyzed by iron porphyrin complex 129. The catalyst was synthesized by connecting binaphthyl moieties to a readily available aa/ / -tetrakis(aminophenyl)-porphyrin (TAPP). Epoxidation of unfunctinalized olefins was carried out using iodosylbenzene as the oxidant. As shown in Scheme 4-46, excellent results were... [Pg.243]

The requirement for the presence of an adjacent alcohol group can be regarded as quite a severe limitation to the substrate range undergoing asymmetric epoxidation using the Katsuki-Sharpless method. To overcome this limitation new chiral metal complexes have been discovered which catalyse the epoxidation of nonfunctionalized alkenes. The work of Katsuki and Jacobsen in this area has been extremely important. Their development of chiral manganese (Ill)-salen complexes for asymmetric epoxidation of unfunctionalized olefins has been reviewed1881. [Pg.23]


See other pages where Complexes asymmetric epoxidation is mentioned: [Pg.248]    [Pg.968]    [Pg.298]    [Pg.195]    [Pg.44]    [Pg.46]    [Pg.83]    [Pg.87]    [Pg.479]    [Pg.479]    [Pg.76]    [Pg.211]    [Pg.217]    [Pg.218]    [Pg.461]    [Pg.461]    [Pg.44]    [Pg.237]    [Pg.243]    [Pg.260]    [Pg.22]   
See also in sourсe #XX -- [ Pg.499 ]




SEARCH



Asymmetric complexes

Asymmetric epoxidation

Epoxidations, asymmetric

Epoxides asymmetric epoxidation

Epoxides complex

© 2024 chempedia.info