Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex kinetics, corrosion

The situation changes when the defect is prepared just down to zinc and the kinehcs of zinc dissolution are rather slow. In this case, the cathodic delamination determines the kinetics of undermining. The delaminated area of the phosphated sample is now smaller than for the defect down to steel, whereas the just alkaline cleaned sample shows delamination that is much faster than in the case of the defect down to steel. This example shows how complex the corrosion mechanisms are and that no generally accepted mechanism can be found in the literature. [Pg.555]

An important special case of complex kinetics is the simultaneous action of basic passive laws together with active corrosion. A typical case for this is when a scale grows but is consumed at the same time by evaporation. The resulting shape of curves is shown in Fig. 7 and has been described as para-linear [23] behavior. It may be analyzed with Eq. (12) omitting the logarithmic term. [Pg.152]

This chapter is coniined to analyze the complex aqueous corrosion phenomaion using the principles of mixed-potential, which in turn is related to the mixed electrode electrochemical corrosion process. This theory has been introduced in Chapter 3 and 4 as oxidation and reduction electrochemical reactions. Basically, this Chapter is an extension of the principles of electrochemistry, in which partial reactions were introduced as half-cell reactions, and their related kinetics were related to activation and concentration polarization processes. The principles and concepts introduced in this chapter represent a unique and yet, simplified approach for understanding the electrochemical behavior of corrosion (oxidation) and reduction reactions in simple electrochemical systems. [Pg.155]

The rate (kinetics) and the completeness (fraction dissolved) of oxide fuel dissolution is an inverse function of fuel bum-up (16—18). This phenomenon becomes a significant concern in the dissolution of high bum-up MO fuels (19). The insoluble soHds are removed from the dissolver solution by either filtration or centrifugation prior to solvent extraction. Both financial considerations and the need for safeguards make accounting for the fissile content of the insoluble soHds an important challenge for the commercial reprocessor. If hydrofluoric acid is required to assist in the dissolution, the excess fluoride ion must be complexed with aluminum nitrate to minimize corrosion to the stainless steel used throughout the facility. Also, uranium fluoride complexes are inextractable and formation of them needs to be prevented. [Pg.204]

In case of a pure Fe-9-2 Cq alloy in 0 05 M tljS04, ip vybjch thie corrosion rate is high, the rate was found to increase yhen the oxygenated acW was deoxygenatedi Ihese exaniples show that the role of pxygen. ip corrosion reactionis is far more complex than would appear from the kinetic curves illustrated above., ... [Pg.105]

Metals are more frequently exposed to the atmosphere than to any other corrosive environment. Atmospheric corrosion is also the oldest corrosion problem known to mankind, yet even today it is not fully understood. The principal reason for this paradox lies in the complexity of the variables which determine the kinetics of the corrosion reactions. Thus, corrosion rates vary from place to place, from hour to hour and from season to season. Equally important, this complexity makes meaningful results from laboratory experiments very difficult to obtain. [Pg.335]

This is a simplified treatment but it serves to illustrate the electrochemical nature of rusting and the essential parts played by moisture and oxygen. The kinetics of the process are influenced by a number of factors, which will be discussed later. Although the presence of oxygen is usually essential, severe corrosion may occur under anaerobic conditions in the presence of sulphate-reducing bacteria Desulphovibrio desulphuricans) which are present in soils and water. The anodic reaction is the same, i.e. the formation of ferrous ions. The cathodic reaction is complex but it results in the reduction of inorganic sulphates to sulphides and the eventual formation of rust and ferrous sulphide (FeS). [Pg.488]

Many factors influence the deposition kinetics of P and B, including metal ion and complexant concentrations, solution pH, and temperature. Though unavoidable side products of the electroless deposits, P and B impart unique properties to electroless deposits, e.g., good corrosion resistance in the case of Ni-P deposits, where the P content can exceed 30 at% in certain solutions [10, 11],... [Pg.237]

Solid-liquid reactions are much more complex than solid-gas reactions and include a variety of technically important processes such as corrosion and electrodeposition. When a solid reacts with a liquid, the products may form a layer on the solid surface or dissolve into the liquid phase. Where the product forms a layer covering the surface completely, the reaction is analogous to solid-gas reactions if the reaction products are partly or wholly soluble in the liquid phase, the liquid has access to the reacting solid, and chemical reaction at the interface therefore becomes important in determining the kinetics. [Pg.490]

Fig. 4 shows a simple phase diagram for a metal (1) covered with a passivating oxide layer (2) contacting the electrolyte (3) with the reactions at the interfaces and the transfer processes across the film. This model is oversimplified. Most passive layers have a multilayer structure, but usually at least one of these partial layers has barrier character for the transfer of cations and anions. Three main reactions have to be distinguished. The corrosion in the passive state involves the transfer of cations from the metal to the oxide, across the oxide and to the electrolyte (reaction 1). It is a matter of a detailed kinetic investigation as to which part of this sequence of reactions is the rate-determining step. The transfer of O2 or OH- from the electrolyte to the film corresponds to film growth or film dissolution if it occurs in the opposite direction (reaction 2). These anions will combine with cations to new oxide at the metal/oxide and the oxide/electrolyte interface. Finally, one has to discuss electron transfer across the layer which is involved especially when cathodic redox processes have to occur to compensate the anodic metal dissolution and film formation (reaction 3). In addition, one has to discuss the formation of complexes of cations at the surface of the passive layer, which may increase their transfer into the electrolyte and thus the corrosion current density (reaction 4). The scheme of Fig. 4 explains the interaction of the partial electrode processes that are linked to each other by the elec-... [Pg.279]

Complexation reactions between Fe(III) and PO4 ions play an important role in soil chemistry, water treatment, and corrosion phenomena. Formation of various species have been postulated depending on the experimental conditions, methods of analyses, and interpretation of results. Few studies, however, have reported thermodynamic and kinetic data for these species. [Pg.90]

Removal of dissolved inorganic impurities from methanol Is of Interest from the point of view of utilization of methanol as an alternative to conventional fuels. Reports show that the corrosion rate of metal alloys used for turbines and fuel transportation is greater in methanol than in water in the presence of traces of chlorine and sodium ions ( , 10). Further, ion complexes in trace quantities have been observed in methanol and there is concern that they could alter the reaction kinetics for processes which use methanol as a feedstock or reaction medium (11). Methanol that Is used as a feedstock In the production of single cell protein could be sterilized as well as purified of heavy metals by reverse osmosis which can be integrated in the design of these processes. [Pg.339]


See other pages where Complex kinetics, corrosion is mentioned: [Pg.323]    [Pg.129]    [Pg.888]    [Pg.252]    [Pg.917]    [Pg.167]    [Pg.714]    [Pg.498]    [Pg.7]    [Pg.213]    [Pg.249]    [Pg.45]    [Pg.305]    [Pg.204]    [Pg.269]    [Pg.343]    [Pg.375]    [Pg.204]    [Pg.48]    [Pg.168]    [Pg.363]    [Pg.483]    [Pg.151]    [Pg.95]    [Pg.1211]    [Pg.136]    [Pg.23]    [Pg.703]    [Pg.499]    [Pg.799]    [Pg.537]    [Pg.476]    [Pg.399]    [Pg.232]    [Pg.253]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



Complexation kinetics

Corrosion: kinetics

Kinetic complexity

Kinetics complexes

© 2024 chempedia.info