Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex-formation, chemistry

They are based on the principle of chromatographic separations either in the gas phase exploiting differences in volatiUty of elements or their compounds, or in the aqueous phase by solvent extraction or ion-exchange separations using differences in the complex formation. Chemistry of elements 104 (Rf) through 108 (Hs), and of elements 112 (Cn) and 114 (llerovium, FI) has been successfully studied using these techniques (see Liquid-Phase Chemistry of Superheavy Elements and Gas-Phase Chemistry of Superheavy Elements ). [Pg.136]

The many possible oxidation states of the actinides up to americium make the chemistry of their compounds rather extensive and complicated. Taking plutonium as an example, it exhibits oxidation states of -E 3, -E 4, +5 and -E 6, four being the most stable oxidation state. These states are all known in solution, for example Pu" as Pu ", and Pu as PuOj. PuOl" is analogous to UO , which is the stable uranium ion in solution. Each oxidation state is characterised by a different colour, for example PuOj is pink, but change of oxidation state and disproportionation can occur very readily between the various states. The chemistry in solution is also complicated by the ease of complex formation. However, plutonium can also form compounds such as oxides, carbides, nitrides and anhydrous halides which do not involve reactions in solution. Hence for example, it forms a violet fluoride, PuFj. and a brown fluoride. Pup4 a monoxide, PuO (probably an interstitial compound), and a stable dioxide, PUO2. The dioxide was the first compound of an artificial element to be separated in a weighable amount and the first to be identified by X-ray diffraction methods. [Pg.444]

The thiosulfate ion, 820 is a stmctural analogue of the sulfate ion where one oxygen atom is replaced by one sulfur atom. The two sulfur atoms of thiosulfate thus are not equivalent. Indeed, the unique chemistry of the thiosulfate ion is dominated by the sulfide-like sulfur atom which is responsible for both the reducing properties and complexing abiUties. The abiUty of thiosulfates to dissolve silver haUdes through complex formation is the basis for their commercial appHcation in photography (qv). [Pg.26]

Preparation and chemistry of chromium compounds can be found ia several standard reference books and advanced texts (7,11,12,14). Standard reduction potentials for select chromium species are given ia Table 2 whereas Table 3 is a summary of hydrolysis, complex formation, or other equilibrium constants for oxidation states II, III, and VI. [Pg.133]

Up to this point, we have emphasized the stereochemical properties of molecules as objects, without concern for processes which affect the molecular shape. The term dynamic stereochemistry applies to die topology of processes which effect a structural change. The cases that are most important in organic chemistry are chemical reactions, conformational changes, and noncovalent complex formation. In order to understand the stereochemical aspects of a dynamic process, it is essential not only that the stereochemical relationship between starting and product states be established, but also that the spatial features of proposed intermediates and transition states must account for the observed stereochemical transformations. [Pg.97]

Organometallic chemistry of pyrrole is characterized by a delicate balance of the ti N)- and -coordination modes. Azacymantrene is an illustration of the considerable nucleophilicity of the heteroatom. However, azaferrocene can be alkylated at C2 and C3 sites. Ruthenium and osmium, rhodium, and iridium chemistry revealed the bridging function of pyrroles, including zwitterionic and pyrrolyne complex formation. The ti (CC) coordination of osmium(2- -) allows versatile derivatizations of the heteroring. [Pg.178]

Increased interest in the chemistry of ylides has produced X-ray structures for compounds 123 (R = OMe) (91T5277) and 138 (92H(34)1005), while possibilities of complex formation have led to structures for bidentate copper complex of 135 (94JCS(D)2651), monodentate copper complex of the 3-phenyltria-zolopyridine 139, monodentate (through N2) dinitrato ligand of 3-methyl-triazolopyridine 140 (99MI4), and dinitrato bidentate copper complex of... [Pg.27]

The Group VI organometallic chemistry is mainly characterized by the occurrence of N- and C-coordination and carbene complex-formation, as well as by some unique cases of Se- (Te-) coordination, ring opening and deselenation. The Group VII organometallic chemistry is known for the carbene and chelate structures of the derivatized thiazoles. [Pg.212]

In these boilers, various interrelated, complex surface chemistry reactions may occur at the metal-water interface, which (apart from the development of a desirable protective magnetite film) can lead to the formation of unwanted deposits. These surface reactions are influenced by the specific heat flux, operating temperatures, and the areas and degree of local metal stress resulting within a particular boiler. [Pg.240]

The chemistry of Co(III) in dilute aqueous acidic solution is complicated by (/) oxidation of the solvent, it) complex formation with counter-ions, Hi) hydrolysis and iv) apparently extensive dimerisation. These phenomena are discussed further in the section on oxidation of water. [Pg.355]

R = Ph, Pr). Modification of their luminescence properties upon formation of three-coordinate gold(I) complexes. Inorganic Chemistry, 42, 2061-2068. [Pg.277]

Seward, T.M. (1981) Metal complex formation in aqueous solutions at elevated temperatures and pressures. In Rickard, D.T. and Wickman, F.E. (eds.). Chemistry and Geochemistry of Solutions at High Temperatures and Pressures, Phys. Chem. Earth, 13 and 14, 113-132. [Pg.285]

K. Burger, Solvation, Ionic and Complex Formation Reactions in Non-Aqueous Solvents (Experimental Methods for their Investigation), Studies in Analytical Chemistry, Vol. 6, Elsevier, Amsterdam, 1983, Ch. 2 and 3 and Ch. 9, pp. 256-257. [Pg.313]

Although non-covalent interactions of anions are one of the most actively explored areas of supramolecular chemistry [15], the anion sensing and recognition have up to now relied primarily on electrostatic binding or hydrogen bonding to the receptor [16,54-61]. However, recent UV-Vis and NMR spectral studies clearly reveal that complex formation takes place in the solutions between halides and neutral olefinic and aromatic it-acceptors such as those in Fig. 3 [23,62],... [Pg.152]

The ability of transition metal ions, and especially chromium (as Cr3+), to form very stable metal complexes may be used to produce dyeings on protein fibres with superior fastness properties, especially towards washing and light. The chemistry of transition metal complex formation with azo dyes is discussed in some detail in Chapter 3. There are two application classes of dyes in which this feature is utilised, mordant dyes and premetallised dyes, which differ significantly in application technology but involve similar chemistry. [Pg.123]

Vladimirova, Z.A., Prozorovskaya, A.N., and Komissarova, L.N. "Investigation of Complex Formation by Zirocnium and Hafnium with Formic Acid by a Kinetic Method," Russian Journal of Organic Chemistry. 1975, 20(10), 1477 1480. [Pg.672]

In Chapter 2 we have described the nature and strengths of metal ion binding sites in the equation for complex formation in chemistry... [Pg.183]

Some of the types of equilibria involved in the unit operations separation and concentration are listed in the introduction, Section 9.17.1. Those which depend most on coordination chemistry, and for which details of metal complex formation are best understood, are associated with hydrometallurgy. Once the metal values have been transferred to an aqueous solution, the separation from other metals and concentration can be achieved by one of the following processes.3... [Pg.768]

It will not be lost on the reader that, while PHOTOFRIN and compounds (3), (5) and (6) contain no metal, they would be expected to be excellent ligands. Are metal complexes useful as PDT photosensitizers Indeed, they are, and may be expected in the future to become more important. The rest of this chapter is about this aspect it will emphasize metal complex formation and properties in relation to PDT. The synthesis of ligands, while of crucial importance, will not usually be treated here in detail, but leading references to relevant synthetic organic chemistry will be provided. The synthesis of porphyrins and related compounds has been considered in several monographs and reviews (porphyrins,46 47 phthalocyanines48). [Pg.954]

Martell, A. E., Ed. (1971). Coordination Chemistry, Vol. 1. Van Nostrand-Reinhold, New York. This is one of the American Chemical Society Monograph Series. Chapter 7 by Hindeman and Sullivan and Chapter 8 by Anderegg deal with equilibria of complex formation. [Pg.692]

A feature of the metal-ion chemistry of these large ring macrocycles is thus the structural diversity which may occur from one system to the next. This diversity can result directly from small changes in the structure of the cyclic ligand and is also aided by the inherent flexibility of the large rings involved. It is clearly also influenced by the nature of the other ligands available for complex formation. [Pg.67]


See other pages where Complex-formation, chemistry is mentioned: [Pg.211]    [Pg.211]    [Pg.109]    [Pg.401]    [Pg.174]    [Pg.47]    [Pg.28]    [Pg.449]    [Pg.461]    [Pg.1028]    [Pg.88]    [Pg.283]    [Pg.1030]    [Pg.112]    [Pg.270]    [Pg.39]    [Pg.276]    [Pg.641]    [Pg.403]    [Pg.65]    [Pg.3]    [Pg.305]    [Pg.267]    [Pg.5]    [Pg.559]    [Pg.209]    [Pg.764]    [Pg.501]   
See also in sourсe #XX -- [ Pg.401 ]




SEARCH



Chemistry complex

© 2024 chempedia.info