Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex azomethinic

A plausible reaction mechanism for this reaction was proposed by the authors. The Cu(i) carbene 182 generated from ethyl diazoacetate and the chiral Gu(i) complex can either react with another molecule of ethyl diazoacetate to form a mixture of diethyl maleate and fumarate 183, or with the imine lone pair to form a Gu(i)-complexed azomethine ylide... [Pg.171]

In the more complex azomethines 21 the configuration on C=N was in fact known from NMR dipole moments served mainly to determine the ap conformation on the Car—1C(N) bond93. With the simple fluorinated azomethine 22 there are no stereochemical problems. The detailed geometry was determined94 by both electron diffraction (ED) and by microwave (MW), and the dipole moment was also measured but not interpreted even its direction is not known with certainty. [Pg.270]

Metal chelates are preser t in the complexes of Schiff bases of amino-(X = NR2), hydroxy- (X = O), and mercapto- (X = S) derivatives of monoheteroaromatic five-membered systems, azoles, and azines. A few publications on the complexes of azomethines of the monoheteroaromatic five-membered systems have appeared only recently. The X-ray structural study of copper(II) bis(2-N-n-octyliminomethyl)benzo[ 7]thio-phene-3-olate) 199 (04ZNK1696) is interesting in the sense that its square-planar structure is complemented by an extended octahedral one due to the intermolecular contacts of the thiophene sulfur with the copper site. Among the azole complexes, azomethine derivatives of p3Tazole (Equation (32)) prevail (05RCR193). There are several types of coordination units (N,N-, N,0-, N,S-, N,Se-) created by variation of the donor sites X in position 5 of the pyrazole ring. When X = O, S, Se, tautomer b is realized, whereas when X = NR, tautomer a predominates (Equation (32)). However, irrespective of the type of tautomer, in the chelates the coordination units have practically equalized bonds. [Pg.332]

Borate reacts with curcumin [458-37-7] C2 H2qO, in the presence of a mineral acid to give a colored 1 2 bore acid curcumin complex that has been used to determine microamounts of boron. Carrninic acid [1260-17-9J, C22H2QO23, (98) and azomethine-H (99) also form a colored complex usehil for low level detection of borates. Boron compounds give a characteristic green color when burned in a flame. [Pg.200]

Interesting structures can be formed by combinations of ring and side-chain substituents in special relative orientations. As indicated above, structures (28) contain the elements of azomethine or carbonyl ylides, which are 1,3-dipoles. Charge-separated species formed by attachment of an anionic group to an azonia-nitrogen also are 1,3-dipoles pyridine 1-oxide (32) is perhaps the simplest example of these the ylide (33) is another. More complex combinations lead to 1,4-dipoles , for instance the pyrimidine derivative (34), and the cross-conjugated ylide (35). Compounds of this type have been reviewed by Ramsden (80AHCl26)l). [Pg.4]

SPh boron detenuination in form of complex with Azomethine-H is the reliable microanalytical method for boronorganic compounds, carboranes, metallacarboranes, etc. Before boron determination the samples should be melted with KOH at 900°C. [Pg.187]

For azomethine ylides and carbonyl ylides, the diastereoselectivity is more complex as the presence of an additional chiral center in the product allows for the formation of four diastereomers. Since the few reactions that are described in this chapter of these dipoles give rise to only one diastereomer, this topic will not be mentioned further here [10]. [Pg.217]

Grigg et al. have found that chiral cobalt and manganese complexes are capable of inducing enantioselectivity in 1,3-dipolar cycloaddition reactions of azomethine... [Pg.240]

Dinuclear and polynuclear complexes with azomethine ligands and tneir magnetic properties. V. A. Kogan, V. V. Zelentsov, O. A. Osipov and A. S. Burlov, Russ. Chem. Rev. (Engl. Transl.), 1979, 48,645-656 (112). [Pg.59]

Sakaki S (2005) Theoretical Studies of C-H s-Bond Activation and Related by Transition-Metal Complexes. 12 31-78 Satoh T, see Miura M (2005) 14 1-20 Satoh T, see Miura M (2005) 14 55-84 Savoia D (2005) Progress in the Asymmetric Synthesis of 1,2-Diamines from Azomethine Compounds. 15 1-58 Schmalz HG, Gotov B, Bbttcher A (2004) Natural Product Synthesis. 7 157-180 Schmidt B, Hermanns J (2004) Olefin Metathesis Directed to Organic Synthesis Principles and Applications. 13 223-267... [Pg.286]

There have been no reports of complexes of " JV-substituted thiosemicarbazones derived from 2-formylpyridine, but 2-acetylpyridine JV-methyl-thiosemicarbazone, 3a, formed [Fe(3a-H)2]C104 and [Fe(3a-H)2]FeCl4 [117]. The nature of these two species was established by partial elemental analyses, molar conductivities, magnetic moments, electronic, infrared, mass and electron spin resonance spectra. A crystal structure of a related selenosemicarbazone complex confirmed the presence of a distorted octahedral iron(III) cation coordinated by two deprotonated anions so that each ligand is essentially planar and the azomethine nitrogens are trans to each other the pyridyl nitrogen and selenium donors are both cis. [Pg.15]

The S-methyldithiocarbazates of both 2-picolylphenylketone, 16, and 2,6-luti-dylphenylketone, 17, yielded high spin iron(Ill) complexes, [Fe(15-H)Cl2(H20)] and [Fe(16-H)Cl2(H20)] [144]. Both complexes involve a tridentate ligand bonding via the pyridyl nitrogen, azomethine nitrogen and thiol sulfur. [Pg.17]

Iron(III) complexes of 2-acetylpyridine Af-oxide iV-methyl- and 3-azabicyclo[3.2.2.]nonylthiosemicarbazone, 24 and 25, respectively, have been isolated from both iron(III) perchlorate and chloride [117], The perchlorate salt yields low spin, octahedral, monovalent, cationic complexes involving two deprotonated, tridentate thiosemicarbazone ligands coordinated via the N-oxide oxygen, azomethine nitrogen and thiol sulfur based on infrared spectral studies. Their powder ESR g-values are included in Table 1 and indicate that bonding is less covalent than for the analogous thiosemicarbazones prepared from 2-acetylpyridine, 3a and 4. Starting with iron (III) chloride, compounds with the same cations, but with tetrachloroferrate(III) anions, were isolated. [Pg.20]

Besides complexes of thiosemicarbazones prepared from nitrogen heterocycles, iron(III) complexes of both 2-formylthiophene thiosemicarbazone, 26, and 2-acetylthiophene thiosemicarbazone, 27, have been isolated [155]. Low spin, distorted octahedral complexes of stoichiometry [Fe(26)2A2]A (A = Cl, Br, SCN) were found to be 1 1 electrolytes in nitromethane. Low spin Fe(27)3A3 (A = Cl, Br, SCN) complexes were also isolated, but their insolubility in organic solvents did not allow molar conductivity measurements. Infrared speetra indicate coordination of both via the azomethine nitrogen and thione sulfur, but not the thiophene sulfur. The thiocyanate complexes have spectral bands at 2065, 770 and 470 cm consistent with N-bonded thiocyanato ligands, but v(FeCl) and v(FeBr) were not assigned due to the large number of bands found in the spectra of the two ligands. [Pg.20]

Iron(II) complexes are often included in studies when complexes are prepared from a large number of different metal ions. 2-formylpyridine thiosemicarbazone, 5, forms brown [Fe(5)2A2] (A = Cl, Br) when prepared in ethanol and [Fe(5-H)2] from aqueous alcohol solution [156], All of these complexes are diamagnetic. The resonance Raman and infrared spectra of [Fe(5-H)2] were examined in detail [130] and coordination occurs via the pyridyl nitrogen, azomethine nitrogen and thiol sulfur. There is appreciable d-d sulfur-to-iron(II) Jt-bonding. Solution studies of iron(II) complexes of some 5-substituted-2-formylpyridine thiosemicarbazones have been reported [157], but no solids... [Pg.20]

The S-methyldithiocarbazates of both 2-formylquinoline, 18, and 1-formyliso-quinoline, 19, yield diamagnetic green [FeL2] complexes from iron(II) sulfate [131]. Coordination for both complexes is via the ring nitrogen, azomethine nitrogen and thiol sulfur based on infrared studies. [Pg.21]

Both 2-formylthiophene thiosemicarbazone, 26, and 2-acetylthiophene thiosemicarbazone, 27, form six coordinate [FeL2A2] complexes (A = Cl, Br) [156], The complexes formed with 26 are low spin, but complexes of 27 are high spin. For both ligands the bidentate coordination is via the azomethine nitrogen... [Pg.21]


See other pages where Complex azomethinic is mentioned: [Pg.35]    [Pg.83]    [Pg.35]    [Pg.83]    [Pg.6180]    [Pg.6228]    [Pg.271]    [Pg.274]    [Pg.35]    [Pg.83]    [Pg.35]    [Pg.83]    [Pg.6180]    [Pg.6228]    [Pg.271]    [Pg.274]    [Pg.488]    [Pg.328]    [Pg.329]    [Pg.88]    [Pg.73]    [Pg.73]    [Pg.196]    [Pg.21]    [Pg.44]    [Pg.12]    [Pg.14]    [Pg.15]    [Pg.19]    [Pg.21]    [Pg.22]    [Pg.23]    [Pg.24]   
See also in sourсe #XX -- [ Pg.88 , Pg.102 , Pg.155 , Pg.193 , Pg.219 , Pg.221 , Pg.227 , Pg.236 ]




SEARCH



Azo/Azomethine Complex Dyes

Azomethine metal complex pigment

Azomethine metal complexes

Azomethine-type complex salts

Azomethines metal complexes

Azomethines, complexation reactions

Silver azomethine complex

Tris-azomethine complexes

© 2024 chempedia.info