Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid-phase combustion

In gas-solid extractions the sample is passed through a container packed with a solid adsorbent. One example of the application of gas-solid extraction is in the analysis of organic compounds for carbon and hydrogen. The sample is combusted in a flowing stream of O2, and the gaseous combustion products are passed through a series of solid-phase adsorbents that remove the CO2 and 1T20. [Pg.213]

The basic approach taken in the analytical studies of composite-propellant combustion represents a modification of the studies of double-base propellants. For composite propellants, it has been assumed that the solid fuel and solid oxidizer decompose at the solid surface to yield gaseous fuel and oxidizing species. These gaseous species then intermix and react in the gas phase to yield the final products of combustion and to establish the flame temperature. Part of the gas-phase heat release is then transferred back to the solid phase to sustain the decomposition processes. The temperature profile is assumed to be similar to the situation associated with double-base combustion, and, in this sense, combustion is identical in the two different types of propellants. [Pg.41]

A third alternative has been proposed by Anderson and Brown (A6, A9) as an outgrowth of their research on the ignition of composite propellants. Their ignition studies suggest significant contributions to the overall combustion process from the solid phase. Two exothermic reaction zones contributing to combustion are considered, as shown schematically in Fig. 19. [Pg.46]

The most notable theoretical analysis of the instability problem has been presented by McClure and Hart (M5). These investigators postulated a generalized combustion zone that includes a temperature-dependent and pressure-independent solid-phase reaction zone, and a temperature- and pressure-dependent gas-phase reaction zone. From this general model, Hart... [Pg.53]

These studies have indicated that the independent parameters controlling the postulated solid-phase reactions significantly affect the resulting acoustic admittance of the combustion zone, even though these reactions were assumed to be independent of the pressure in the combustion zone. In this combustion model, the pressure oscillations cause the flame zone to move with respect to the solid surface. This effect, in turn, causes oscillations in the rate of heat transfer from the gaseous-combustion zone back to the solid surface, and hence produces oscillations in the temperature of the solid surface. The solid-phase reactions respond to these temperature oscillations, producing significant contributions to the acoustical response of the combustion zone. [Pg.54]

Williams (W2) has recently modified the analysis of Hart and McClure by considering in more detail the effect of diffusional processes on the gas-phase reaction zone. The results of his study show that the diffusional processes tend to stabilize the gas-phase combustion process, indicating that the postulated solid-phase reactions are probably the underlying cause of the instability. [Pg.54]

The combustion processes which control the critical depressurization rate are not understood. Landers (LI) and Von Elbe (VI) have tired to derive an expression for the critical depressurization rate, but the transient combustion model they used is far too simplified to predict the effects shown in Figs. 24 and 25. One possible explanation for these large variations would be that heat-release processes within the solid phase are important. From light-emission measurements during depressurization, Ciepluch observed that it was much easier to eliminate light emission than to terminate combustion (i.e., approximately 12,000 psi/sec produced light emission, compared with 100,000 psi/sec for termination). [Pg.58]

Diamondoid (kJ/gmol) soUd (kJ/gmol) A TJO sublimation (kJ/gmol) A combustion (kJ/gmol) (solid phase) References... [Pg.216]

The combustion of a chemical substance takes place in the gaseous phase except with metals and metalloids where combustion takes place in the solid phase. This impiies that a soiid or a liquid inflammable chemical has the ability to vapourise in order to buiid an inflammable vapour-air mixture. The two indicative parameters are the boiling point and, most important, the vapour pressure of the liquid. [Pg.35]

Fernandez-Pello, A.C., The solid phase, in Combustion Fundamentals of Fire, (ed. G. Cox), Academic Press, London, 1994. [Pg.188]

The last point is worth considering in more detail. Most hydrocarbon diffusion flames are luminous, and this luminosity is due to carbon particulates that radiate strongly at the high combustion gas temperatures. As discussed in Chapter 6, most flames appear yellow when there is particulate formation. The solid-phase particulate cloud has a very high emissivity compared to a pure gaseous system thus, soot-laden flames appreciably increase the radiant heat transfer. In fact, some systems can approach black-body conditions. Thus, when the rate of heat transfer from the combustion gases to some surface, such as a melt, is important—as is the case in certain industrial furnaces—it is beneficial to operate the system in a particular diffusion flame mode to ensure formation of carbon particles. Such particles can later be burned off with additional air to meet emission standards. But some flames are not as luminous as others. Under certain conditions the very small particles that form are oxidized in the flame front and do not create a particulate cloud. [Pg.458]

A schematic representation of the combustion wave structure of a typical energetic material is shown in Fig. 3.9 and the heat transfer process as a function of the burning distance and temperature is shown in Fig. 3.10. In zone I (solid-phase zone or condensed-phase zone), no chemical reactions occur and the temperature increases from the initial temperature (Tq) to the decomposition temperature (T ). In zone II (condensed-phase reaction zone), in which there is a phase change from solid to liquid and/or to gas and reactive gaseous species are formed in endothermic or exothermic reactions, the temperature increases from T to the burning surface temperature (Tf In zone III (gas-phase reaction zone), in which exothermic gas-phase reactions occur, the temperature increases rapidly from Tj to the flame temperature (Tg). [Pg.55]

The combustion wave of HMX is divided into three zones crystallized solid phase (zone 1), solid and/or liquid condensed phase (zone 11), and gas phase (zone 111). A schematic representation of the heat transfer process in the combustion wave is shown in Fig. 5.5. In zone 1, the temperature increases from the initial value Tq to the decomposition temperature T without reaction. In zone 11, the temperature increases from T to the burning surface temperature Tj (interface of the condensed phase and the gas phase). In zone 111, the temperature increases rapidly from to the luminous flame temperature (that of the flame sheet shown in Fig. 5.4). Since the condensed-phase reaction zone is very thin (-0.1 mm), is approximately equal to T . [Pg.118]

The heat transfer process in the combustion wave of TAGN consists of three zones, similar to what was illustrated for HMX in Fig. 5.5. Zone I is the solid phase, the temperature of which increases exponentially from the initial temperature, Tg, to the decomposition temperature, without chemical reaction. Zone II is the condensed phase, the temperature of which increases from T to the burning surface temperature, T, in an exothermic reaction. Zone III is the gas phase, the temperature of which increases rapidly from to the final combustion temperature, Tg, in an exothermic reaction. [Pg.124]

The thermal structure of the combustion wave of a double-base propellant is revealed by its temperature profile trace. In the solid-phase reaction zone, the temperature increases rapidly from the initial temperature in the heat conduction zone, Tq, to the onset temperature of the solid-phase reaction, T , which is just below the burning surface temperature, T. The temperature continues to increase rapidly from T to the temperature at the end of the fizz zone, T, which is equal to the temperature at the beginning of the dark zone. In the dark zone, the temperature increases relatively slowly and the thickness of the dark zone is much greater than that of the solid-phase reaction zone or the fizz zone. Between the dark zone and the flame zone, the temperature increases rapidly once more and reaches the maximum flame temperature in the flame zone, i. e., the adiabatic flame temperature, Tg. [Pg.146]

The combustion wave structure of RDX composite propellants is homogeneous and the temperature in the solid phase and in the gas phase increases relatively smoothly as compared with AP composite propellants. The temperature increases rapidly on and just above the burning surface (in the dark zone near the burning surface) and so the temperature gradient at the burning surface is high. The temperature in the dark zone increases slowly. However, the temperature increases rapidly once more at the luminous flame front. The combustion wave structure of RDX and HMX composite propellants composed of nitramines and hydrocarbon polymers is thus very similar to that of double-base propellants composed of nitrate esters.[1 1... [Pg.205]


See other pages where Solid-phase combustion is mentioned: [Pg.39]    [Pg.490]    [Pg.39]    [Pg.194]    [Pg.39]    [Pg.490]    [Pg.39]    [Pg.194]    [Pg.1279]    [Pg.1009]    [Pg.219]    [Pg.933]    [Pg.936]    [Pg.2]    [Pg.37]    [Pg.45]    [Pg.59]    [Pg.64]    [Pg.82]    [Pg.215]    [Pg.562]    [Pg.95]    [Pg.53]    [Pg.589]    [Pg.146]    [Pg.408]    [Pg.1278]    [Pg.20]    [Pg.359]    [Pg.16]    [Pg.331]    [Pg.514]    [Pg.219]    [Pg.123]    [Pg.74]    [Pg.111]    [Pg.147]    [Pg.524]   
See also in sourсe #XX -- [ Pg.541 ]




SEARCH



Combustible solids

Combustion solids

© 2024 chempedia.info