Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Columns packed towers

When compared to conventional systems (such as strippers, scrubbers, distillation columns, packed towers, bubble columns, evaporators, etc.), membrane contactors present several advantages, as reported in Figure 20.3. However, some drawbacks have also to be taken into account, as shown in Figure 20.4. [Pg.452]

The main consideration for introducing reflux or intermediate feed into a packed tower is adequately distributing the incoming stream to the packing. Unlike most tray columns, packed towers are sensitive to distribution. Maldistribution is detrimental to packing efficiency and turndown. The main devices that set the quality of distribution in a packed column are the top (or reflux) distributor, the intermediate feed distributor, the redistributor, and sometimes the vapor distributor. Adequate hydraulics in the inlet area is also important failure to achieve this can affect distributor performance and can also cause premature flooding. [Pg.35]

In comparison to tray columns, packed towers have a low specific pressure drop per unit height or equivalent stage, a lower liquid holdup, a lower residence time and a higher loadability. Also, geometrically simple packing elements can be manufactured from most materials (steel, stainless steel, copper, carbon, earthenware, china, glass, plastics, etc.) and therefore can provide the possibility of processing corrosive substances. [Pg.198]

If a waste contains a mixture of volatile components that have similar vapor pressures, it is more difficult to separate these components and continuous fractional distillation is required. In this type of distillation unit (Fig. 4), a packed tower or tray column is used. Steam is introduced at the bottom of the column while the waste stream is introduced above and flows downward, countercurrent to the steam. As the steam vaporizes the volatile components and rises, it passes through a rectification section above the waste feed. In this section, vapors that have been condensed from the process are refluxed to the column, contacting the rising vapors and enriching them with the more volatile components. The vapors are then collected and condensed. Organics in the condensate may be separated from the aqueous stream after which the aqueous stream can be recycled to the stripper. [Pg.161]

Packed vs Plate Columns. Relative to plate towers, packed towers are more useful for multipurpose distillations, usually in small (under 0.5 m) towers or for the following specific appHcations severe corrosion environment where some corrosion-resistant materials, such as plastics, ceramics, and certain metaUics, can easily be fabricated into packing but may be difficult to fabricate into plates vacuum operation where a low pressure drop per theoretical plate is a critical requirement high (eg, above 49,000 kg/(hm ) (- 10, 000 lb/(hft )) Hquid rates foaming systems or debottlenecking plate towers having plate spacings that are relatively close, under 0.3 m. [Pg.174]

Equipment Absorption, stripping, and distiUation operations are usually carried out in vertical, cylindrical columns or towers in which devices such as plates or packing elements are placed. The gas and liquid normally flow countercurrently, and the devices serve to provide the contacting and development of interfacial surface through which mass transfer takes place. Background material on this mass transfer process is given in Sec.. 5. [Pg.1350]

In 1966, in a paper that now is considered a classic, Danckwerts and Gillham [Tmns. Inst. Chem. Eng., 44, T42 (1966)] showed that data taken in a small stirred-ceU laboratoiy apparatus could be used in the design of a packed-tower absorber when chemical reactions are involved. They showed that if the packed-tower mass-transfer coefficient in the absence of reaction (/cf) can be reproduced in the laboratory unit, then the rate of absorption in the l oratoiy apparatus will respond to chemical reactions in the same way as in the packed column even though the means of agitating the hquid in the two systems might be quite different. [Pg.1366]

FIG. 14-61 Liq uid distribution in a 6-in column packed with 1/4-in broken-stone packing. Increments of radius represent equal-annual-area segments of tower cross section. Central-point inlet. Water rate = 500 lb/(b-fr). Air rate = 810 lb/(b-ft ). To convert pounds per bour-square foot to kilograms per second-square meter, multiply by 0.00L356 to convert inches to centimeters, multiply by 2.54. (Data from Baker, Chilton, and Vernon, in Shetxuood and Pigford, Absorption and Extraction, 2d ed., McGraw-Hill, New York, 1952. )... [Pg.1395]

Many operating data for carbonate plants are cited by Kohl and Riesenfeld (Gn.s Purification, Gulf, 1985) but not including tower heights. Pilot plant tests, however, are reported on 0.10- and 0.15-m (4- and 6-in) columns packed to depths of 9.14 m (30 ft) of Raschig rings hy Benson et al. (Chem. Eng. Prog., 50, 356 [1954]). [Pg.2110]

Packed columns are gaining ground on trayed columns. Lieberman states that based on his design and operating experience, a properly designed packed tower can have 20-40% more capacity than a trayed tower with an equal number of fractionation stages. [Pg.76]

However, in certain cases, the impingement plate design is preferred over packed-tower columns when either internal cooling is desired, or where low liquid flow rates would inadequately wet the packing. [Pg.448]

Amine strippers use heat and steam to reverse the chemical reactions with CO2 and H2S. The steam acts as a stripping gas to remove the COo and HjS from the liquid solution and to cairy these gases to the overhead. To promote mixing of the solution and the steam, the stripper is a trayed or packed tower with packing normally used for small diameter columns. [Pg.188]

This is the boilup rate, which is approximately 3.3 ft vapor/sec. An approximately 1 ft 0 in. diameter column can handle this rate however, because it is in the usual size for a packed tower (or cartridge trays), the diameter must be checked using the packed tower calculations in Chapter 9 of this volume. [Pg.53]

Thus either the penetration theory or the film theory (equation 10.144 or 10.145) respectively can be used to describe the mass transfer process. The error will not exceed some 9 per cent provided that the appropriate equation is used, equation 10.144 for L2 jDt > n and equation 10.145 for L2/Dt < n. Equation 10.145 will frequently apply quite closely in a wetted-wall column or in a packed tower with large packings. Equation 10.144 will apply when one of the phases is dispersed in the form of droplets, as in a spray tower, or in a packed tower with small packing elements. [Pg.616]

It is doubtful if any design is entirely novel. The antecedence of most designs can usually be easily traced. The first motor cars were clearly horse-drawn carriages without the horse and the development of the design of the modern car can be traced step by step from these early prototypes. In the chemical industry, modem distillation processes have developed from the ancient stills used for rectification of spirits and the packed columns used for gas absorption have developed from primitive, brushwood-packed towers. So, it is not often that a process designer is faced with the task of producing a design for a completely novel process or piece of equipment. [Pg.4]


See other pages where Columns packed towers is mentioned: [Pg.295]    [Pg.78]    [Pg.78]    [Pg.627]    [Pg.295]    [Pg.78]    [Pg.78]    [Pg.627]    [Pg.18]    [Pg.19]    [Pg.39]    [Pg.386]    [Pg.409]    [Pg.58]    [Pg.363]    [Pg.160]    [Pg.660]    [Pg.1327]    [Pg.1351]    [Pg.1352]    [Pg.1387]    [Pg.1424]    [Pg.1424]    [Pg.1434]    [Pg.246]    [Pg.246]    [Pg.253]    [Pg.323]    [Pg.325]    [Pg.165]    [Pg.31]    [Pg.275]    [Pg.276]    [Pg.497]    [Pg.111]    [Pg.720]    [Pg.152]   
See also in sourсe #XX -- [ Pg.322 ]




SEARCH



Packed columns

Packed columns, packing

Packed towers

Packed towers packing

Tower packings

© 2024 chempedia.info