Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Column distillation reflux ratio

Low and Sorenson (2003) presented the optimal design and operation of MultiVBD column. A profit function based on revenue, capital cost and operating cost was maximized while optimising the number of stages in different column sections, reflux ratio, etc. They compared the performance of MultiVBD with that of conventional batch distillation column for a number of different mixtures and claimed that MultiVBD operation is more profitable. However, for all cases considered in their work, the products specifications and amounts were not matched exactly and therefore the... [Pg.253]

Eor the trayed column, the reflux ratio is 2.75 and the distillate rate is 55.5 kmol/h. The liquid flow in the rectifying section,... [Pg.552]

The choice of which to use depends on the column reflux ratio. Conventional distillation wisdom recommends that columns with reflux ratios less than about 3 can use a control structure in which reflux-drum level is controlled by manipulating the distillate flow rate. However, columns with higher reflux ratios should control reflux-drum level with reflux flow rate. The logic here is to avoid saturation of the control valve. [Pg.170]

Figure 8.1 gives the flowsheet of process (Figure 5.1). The 540kmol/h of fresh feed is a binary mixture of acetone and methanol, which is fed on Stage 24 of a 37-stage column operating at 1 atm. The DMSO solvent is fed on Stage 4 at a flow rate of 271 kmol/h. High-purity acetone (99.95 mol%) is the distillate product of the extractive column. The reflux ratio (RR) is 0.842. Figure 8.1 gives the flowsheet of process (Figure 5.1). The 540kmol/h of fresh feed is a binary mixture of acetone and methanol, which is fed on Stage 24 of a 37-stage column operating at 1 atm. The DMSO solvent is fed on Stage 4 at a flow rate of 271 kmol/h. High-purity acetone (99.95 mol%) is the distillate product of the extractive column. The reflux ratio (RR) is 0.842.
The reflux ratio, that is, the ratio of material returning via reflux to the distillation column or the distillation flask compared to the amount presented to the condenser in unit time must be carefully controlled. The higher the reflux ratio, the purer the material collected from the distillation. Reflux ratios are controlled in simple distillation apparatus by adjustment of the heating rate and by maintaining stable thermal conditions throughout the apparatus. [Pg.862]

The reflux ratio is defined as the ratio of the number of drops of distillate that return to the distillation flask compared to the number of drops of distillate collected. In an efficient column, the reflux ratio should equal or exceed the number of theoretical plates. A high reflux ratio ensures that the column will achieve temperature equilibrium and achieve its maximum efficiency. This ratio is not easy to determine in fact, it is impossible to determine when using a Hickman head, and it should not concern a beginning student. In some cases, the throughput, or rate of takeoff, of a column may be specified. This is expressed as the number of milliliters of distillate that can be collected per unit of time, usually as mL/min. [Pg.758]

Rectification without Liquid Holdup in Column Finite Reflux Ratio In this case, it is assumed that the distillation is carried out with a fractionating column, that the holjluii f liquid in the column is neg igi-... [Pg.370]

Consider again the simple process shown in Fig. 4.4d in which FEED is reacted to PRODUCT. If the process usbs a distillation column as separator, there is a tradeofi" between refiux ratio and the number of plates if the feed and products to the distillation column are fixed, as discussed in Chap. 3 (Fig. 3.7). This, of course, assumes that the reboiler and/or condenser are not heat integrated. If the reboiler and/or condenser are heat integrated, the, tradeoff is quite different from that shown in Fig. 3.7, but we shall return to this point later in Chap. 14. The important thing to note for now is that if the reboiler and condenser are using external utilities, then the tradeoff between reflux ratio and the number of plates does not affect other operations in the flowsheet. It is a local tradeoff. [Pg.239]

Distillation capital costs. The classic optimization in distillation is to tradeoff capital cost of the column against energy cost for the distillation, as shown in Fig. 3.7. This wpuld be carried out with distillation columns operating on utilities and not integrated with the rest of the process. Typically, the optimal ratio of actual to minimum reflux ratio lies in the range 1.05 to 1.1. Practical considerations often prevent a ratio of less than 1.1 being used, as discussed in Chap. 3. [Pg.349]

Thus the optimal reflux ratio for an appropriately integrated distillation column will be problem-specific and is likely to be quite different from that for a stand-alone column. [Pg.350]

R distillation column reflux ratio (-) or heat capacity ratio of 1-2 shell-and-tube heat exchanger (-)... [Pg.479]

This is the ASTM D 2892 test method and corresponds to a laboratory technique defined for a distillation column having 15 to 18 theoretical plates and operating with a 5 1 reflux ratio. The test is commonly known as the TBP for True Boiling Point. [Pg.18]

Reflux ratio. This is defined as the ratio between the number of moles of vapour returned as refluxed liquid to the fractionating column and the number of moles of final product (collected as distillate), both per unit time. The reflux ratio should be varied according to the difficulty of fractionation, rather than be maintained constant a high efficiency of separation requires a liigh reflux ratio. ... [Pg.95]

Fractional distillation. Fig. II, 60, 2 illustrates a set-up for fractional distillation wdth a Hempel-type column and cold finger, the latter to give manual control of the reflux ratio. Any other fractionating colunm, e.g., an all-glass Dufton or a Widmer column may, of course, be used. [Pg.226]

The dominance of distiHation-based methods for the separation of Hquid mixtures makes a number of points about RCM and DRD significant. Residue curves trace the Hquid-phase composition of a simple single-stage batch stiHpot as a function of time. Residue curves also approximate the Hquid composition profiles in continuous staged or packed distillation columns operating at infinite reflux and reboil ratios, and are also indicative of many aspects of the behavior of continuous columns operating at practical reflux ratios (12). [Pg.446]

In the example, the minimum reflux ratio and minimum number of theoretical plates decreased 14- to 33-fold, respectively, when the relative volatiHty increased from 1.1 to 4. Other distillation systems would have different specific reflux ratios and numbers of theoretical plates, but the trend would be the same. As the relative volatiHty approaches unity, distillation separations rapidly become more cosdy in terms of both capital and operating costs. The relative volatiHty can sometimes be improved through the use of an extraneous solvent that modifies the VLE. Binary azeotropic systems are impossible to separate into pure components in a single column, but the azeotrope can often be broken by an extraneous entrainer (see Distillation, A7EOTROPTC AND EXTRACTIVE). [Pg.175]

While process design and equipment specification are usually performed prior to the implementation of the process, optimization of operating conditions is carried out monthly, weekly, daily, hourly, or even eveiy minute. Optimization of plant operations determines the set points for each unit at the temperatures, pressures, and flow rates that are the best in some sense. For example, the selection of the percentage of excess air in a process heater is quite critical and involves a balance on the fuel-air ratio to assure complete combustion and at the same time make the maximum use of the Heating potential of the fuel. Typical day-to-day optimization in a plant minimizes steam consumption or cooling water consumption, optimizes the reflux ratio in a distillation column, or allocates raw materials on an economic basis [Latour, Hydro Proc., 58(6), 73, 1979, and Hydro. Proc., 58(7), 219, 1979]. [Pg.742]

If the produc ts from a column are especially pure, even this configuration may produce excessive interaction between the composition loops. Then the composition of the less pure product should oe con-troUed by manipulating its own flow the composition of the remaining product should be controlled by manipulating reflux ratio if it is the distillate or boilup ratio if it is the bottom product. [Pg.747]

Example 8 Calculation of Rate-Based Distillation The separation of 655 lb mol/h of a bubble-point mixture of 16 mol % toluene, 9.5 mol % methanol, 53.3 mol % styrene, and 21.2 mol % ethylbenzene is to be earned out in a 9.84-ft diameter sieve-tray column having 40 sieve trays with 2-inch high weirs and on 24-inch tray spacing. The column is equipped with a total condenser and a partial reboiler. The feed wiU enter the column on the 21st tray from the top, where the column pressure will be 93 kPa, The bottom-tray pressure is 101 kPa and the top-tray pressure is 86 kPa. The distillate rate wiU be set at 167 lb mol/h in an attempt to obtain a sharp separation between toluene-methanol, which will tend to accumulate in the distillate, and styrene and ethylbenzene. A reflux ratio of 4.8 wiU be used. Plug flow of vapor and complete mixing of liquid wiU be assumed on each tray. K values will be computed from the UNIFAC activity-coefficient method and the Chan-Fair correlation will be used to estimate mass-transfer coefficients. Predict, with a rate-based model, the separation that will be achieved and back-calciilate from the computed tray compositions, the component vapor-phase Miirphree-tray efficiencies. [Pg.1292]


See other pages where Column distillation reflux ratio is mentioned: [Pg.216]    [Pg.371]    [Pg.371]    [Pg.75]    [Pg.135]    [Pg.287]    [Pg.121]    [Pg.372]    [Pg.433]    [Pg.241]    [Pg.252]    [Pg.401]    [Pg.98]    [Pg.101]    [Pg.902]    [Pg.182]    [Pg.448]    [Pg.482]    [Pg.337]    [Pg.78]    [Pg.78]    [Pg.165]    [Pg.165]    [Pg.166]    [Pg.187]    [Pg.197]    [Pg.197]    [Pg.197]    [Pg.744]    [Pg.747]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Column distillation reflux

Column reflux ratio

Distillation ratios

Distillation reflux ratio

Distilling columns

Reflux ratio

Reflux, distillation

© 2024 chempedia.info