Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloids monodisperse

Segmented gas-liquid (Taylor) flow was used for particle synthesis within the liquid slugs. Tetraethylorthosilicate in ethanol was hydrolyzed by a solution of ammonia, water and ethanol (Stober synthesis) [329]. The resulting silicic acid monomer Si (OH)4 is then converted by polycondensation to colloidal monodisperse silica nanoparticles. These particles have industrial application, for example, in pigments, catalysts, sensors, health care, antireflective coatings and chromatography. [Pg.178]

Even when carefully prepared, model colloids are almost never perfectly monodisperse. The spread in particle sizes, or polydispersity, is usually expressed as the relative widtli of tire size distribution,... [Pg.2669]

An important step in tire progress of colloid science was tire development of monodisperse polymer latex suspensions in tire 1950s. These are prepared by emulsion polymerization, which is nowadays also carried out industrially on a large scale for many different polymers. Perhaps tire best-studied colloidal model system is tliat of polystyrene (PS) latex [9]. This is prepared with a hydrophilic group (such as sulphate) at tire end of each molecule. In water tliis produces well defined spheres witli a number of end groups at tire surface, which (partly) ionize to... [Pg.2669]

One model for rod-like colloids is tire tobacco mosaic vims (TM V), which consists of rods of diameter D about 18 nm and lengtli L of 300 nm [17,18]. These colloids have tire advantage of being quite monodisperse, but are hard to obtain in large amounts. The fd vims gives longer, semi-flexible rods (L = 880 nm, D = 9 nm) [18,19]. Inorganic boehmite rods have also been prepared successfully [20]. [Pg.2670]

The fonnation of colloidal crystals requires particles tliat are fairly monodisperse—experimentally, hard sphere crystals are only observed to fonn in samples witli a polydispersity below about 0.08 [69]. Using computer... [Pg.2686]

Matijevi i E 1976 Preparation and oharaoterization of monodispersed metal hydrous oxide sols Prog. Colloid Polym. Sol. 61 24-35... [Pg.2690]

Stdber W, Fink A and Bohn E 1968 Controlled growth of monodisperse silioa spheres in the mioron size range J. Colloid Interface Sol. 26 62-9... [Pg.2690]

Pathmamanoharan C and Philipse A P 1998 Preparation and properties of monodisperse magnetic cobalt colloids grafted with polyisobutene J. Colloid Interface Sol. 205 304-53... [Pg.2690]

Flachisu S and Kobayashi Y 1974 Kirkwood-Alder transition in monodisperse latexes. II. Aqueous latexes of high electrolyte concentration J. Colloid Interface Sol. 46 470-6... [Pg.2694]

Kose A and Flachisu S 1976 Ordered structure in weakly flocculated monodisperse latex J. Colloid Interface Sol. 55 487-98... [Pg.2694]

Several colloidal systems, that are of practical importance, contain spherically symmetric particles the size of which changes continuously. Polydisperse fluid mixtures can be described by a continuous probability density of one or more particle attributes, such as particle size. Thus, they may be viewed as containing an infinite number of components. It has been several decades since the introduction of polydispersity as a model for molecular mixtures [73], but only recently has it received widespread attention [74-82]. Initially, work was concentrated on nearly monodisperse mixtures and the polydispersity was accounted for by the construction of perturbation expansions with a pure, monodispersive, component as the reference fluid [77,80]. Subsequently, Kofke and Glandt [79] have obtained the equation of state using a theory based on the distinction of particular species in a polydispersive mixture, not by their intermolecular potentials but by a specific form of the distribution of their chemical potentials. Quite recently, Lado [81,82] has generalized the usual OZ equation to the case of a polydispersive mixture. Recently, the latter theory has been also extended to the case of polydisperse quenched-annealed mixtures [83,84]. As this approach has not been reviewed previously, we shall consider it in some detail. [Pg.154]

The formation of ordered two- and three-dimensional microstructuies in dispersions and in liquid systems has an influence on a broad range of products and processes. For example, microcapsules, vesicles, and liposomes can be used for controlled drug dehvery, for the contaimnent of inks and adhesives, and for the isolation of toxic wastes. In addition, surfactants continue to be important for enhanced oil recovery, ore beneficiation, and lubrication. Ceramic processing and sol-gel techniques for the fabrication of amorphous or ordered materials with special properties involve a rich variety of colloidal phenomena, ranging from the production of monodispersed particles with controlled surface chemistry to the thermodynamics and dynamics of formation of aggregates and microciystallites. [Pg.176]

New methods of emulsion polymerization, particularly the use of swelhng agents, are needed to produce monodisperse latexes with a desired size and surface chemistiy. Samples of latex spheres with uniform diameters up to 100 pm are now commercially available. These spheres and other mono-sized particles of various shapes can be used as model colloids to study two- and three-dimensional many-body systems of very high complexity. [Pg.178]

The topic of gold nanospheres attracted the interest of several famous nineteenth century scientists such as Michael Faraday, Richard Zsigmondy, and Gustov Mie [43]. Interest diminished in the mid-twentieth century although some excellent contributions were made by Turkevich [42, 44], Frens [45], and Brust [46] in that period regarding the controlled preparation of nearly monodisperse colloidal suspensions. [Pg.325]

Recently it has been reported that even colloidal particle suspensions themselves, without added polymers, can form dissipative structures. Periodic stripes of colloidal particles (monodisperse particles of diameter 30 nm and 100 nm, respectively) and polystyrene particles (monodisperse diameters from 0.5 to 3 pm) can be formed from dilute aqueous suspensions. The stripes are parallel to the receding direction of the edge of the suspension droplet and thus indicate that a fingering instability... [Pg.193]


See other pages where Colloids monodisperse is mentioned: [Pg.638]    [Pg.332]    [Pg.5574]    [Pg.214]    [Pg.140]    [Pg.5573]    [Pg.155]    [Pg.214]    [Pg.638]    [Pg.332]    [Pg.5574]    [Pg.214]    [Pg.140]    [Pg.5573]    [Pg.155]    [Pg.214]    [Pg.328]    [Pg.340]    [Pg.2669]    [Pg.2669]    [Pg.2690]    [Pg.2690]    [Pg.2911]    [Pg.15]    [Pg.302]    [Pg.213]    [Pg.229]    [Pg.44]    [Pg.188]    [Pg.289]    [Pg.291]    [Pg.274]    [Pg.330]    [Pg.23]    [Pg.27]    [Pg.31]    [Pg.32]    [Pg.33]    [Pg.35]    [Pg.36]    [Pg.57]    [Pg.149]   
See also in sourсe #XX -- [ Pg.485 ]




SEARCH



Monodispersed

Monodispersivity

© 2024 chempedia.info