Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coke media

Aeration towers are often simply constructed wooden towers with or without the benefit of a forced-air draft, over which the well water is distributed. Typically, the tower holds 8 to 10 trays, each with a 3- to 4-inch (7.6-10.2 cm) bed depth of volcanic lava or coke media to provide the total 30 to 36" (76-91 cm) depth required. The lava or coke acts as a catalyst for the further precipitation of iron and manganese salts. These salts can be readily oxidized provided there is sufficient alkalinity present. If in doubt, ensure a minimum of 120 to 150 ppm total alkalinity (T Aik or M Aik) as CaC03. [Pg.310]

Because of the increased sulfur and impurity levels in crudes currently being processed, refiners in recent years have been considering residue desulfurization units upstream of the delayed coker. In addition to the reduction in sulfur content, residue desulfurization units also lower the metals and carbon residue contents. Due to the reduction in the carbon residue, the liquid product yield is increased and the coke yield reduced. In addition, the coke produced from a desulfurized residue may be suitable for use as anode grade coke. Table I shows the yields and product properties after coking Medium Arabian vacuum residue, with and without upstream residue desulfurization. [Pg.172]

Bituminous coal is black and banded in appearance. The term bituminous covers a broad range of properties and this type of coal is usually prefixed with coking, medium, or noncoking. On a dry, ash-free basis the carbon content of bituminous coals is within the range 75-90% and the volatile matter ranges from 20 to 45%. [Pg.370]

Coal can be converted to gas by several routes (2,6—11), but often a particular process is a combination of options chosen on the basis of the product desired, ie, low, medium, or high heat-value gas. In a very general sense, coal gas is the term appHed to the mixture of gaseous constituents that are produced during the thermal decomposition of coal at temperatures in excess of 500°C (>930°F), often in the absence of oxygen (air) (see Coal CONVERSION PROCESSES, gasification) (3). A soHd residue (coke, char), tars, and other Hquids are also produced in the process ... [Pg.62]

Carbochlorination. Milled zircon and coke are reacted with hot chlorine gas in a fluidized bed using chlorine as the fluidizing medium ... [Pg.441]

Recovering ammonia as a by-product from other processes accounted for less than 1% of the total U.S. ammonia production in 1987. The principal source of by-product ammonia is from the coking of coal. In the coking operation, about 15—20% of the nitrogen present in the coal is Hberated as ammonia and is recovered from the coke oven gas as ammonium sulfate, ammonia Hquor, and ammonium phosphates. The recovery product depends on the scmbbing medium employed, sulfuric acid, milk of lime, and phosphoric acid, respectively. Ammonium sulfate recovery by the so-called semidirect process, is most widely employed. [Pg.359]

Pitch. The principal outlet for coal-tar pitch is as the binder for the electrodes used in aluminum smelting. These are of two types. Older plants employ Sn derberg furnaces, which incorporate paste electrodes consisting of a mixture of about 70% graded petroleum coke or pitch coke and 30% of a medium-hard coke-oven pitch. This paste is added periodically to the top of the monolithic electrode as it is consumed. The more modem smelters employ prebaked electrodes requiring less binder, about 18%. [Pg.347]

The specification requirements for electrode binder pitch, eg, high C/H ratio, high coking value, and high P-resin content, effectively ruled out pitches from gasworks or low temperature tars. The cmde tar is distilled to a medium-soft pitch residue and then hardened by heating for several hours at 385—400°C. This treatment increases the toluene-insoluble content and produces only a slight increase in the quinoline-insoluble (Ql) material, the latter by the formation of mesophase. [Pg.347]

In the CIS pitch coke is made by carbonizing a hard coke-oven pitch in modified coke ovens. The hard pitch has an R-and-B softening point of 140—150°C and is made by air-blowing a mixture of medium-soft pitch and recycled coking oils. This feedstock is charged in the molten state over a period of 5 h and coked for 17—18 h at 1250—1300°C. The coke yield is 70%. Oils, which are recycled, amount to 20% by weight of the pitch fed. The gas yield... [Pg.348]

The most dominant catalytic process in the United States is the fluid catalytic cracking process. In this process, partially vaporized medium-cut petroleum fractions called gas oils are brought in contact with a hot, moving, freshly regenerated catalyst stream for a short period of time at process conditions noted above. Spent catalyst moves continuously into a regenerator where deposited coke on the catalyst is burnt off. The hot, freshly regenerated catalyst moves back to the reactor to contact the hot gas oil (see Catalysts, regeneration). [Pg.367]

Low- and Medium-Temperature Coke (773 to 1023 K or 932 to 1382°F.) Cokes of this type are no longer produced in the United States to a significant extent. However, there is some interest in low-temperature carbonization as a source of both hydrocarbon liquids and gases to supplement petroleum and natural-gas resources. [Pg.2361]

The bottom section of the main column provides a heat transfer zone. Shed decks, disk/doughnut trays, and grid packing are among some of the contacting devices used to promote vapor/liquid contact. The overhead reactor vapor is desuperheated and cooled by a pumparound stream. The cooled pumparound also serves as a scrubbing medium to wash down catalyst fines entrained in the vapors. Pool quench can be used to maintain the fractionator bottoms temperature below coking temperature, usually at about 700°F (370°C). [Pg.22]

The objective of this work is to study the possible influence of the crude oil composition on the amount of coke deposit and on its ability to undergo in-situ combustion. Thus, the results would provide valuable information not only for numerical simulation of in-situ combustion but also to define better its field of application. With this aim, five crude oils with different compositions were used in specific laboratory tests that were carried out to characterize the evolution of the crude oil composition. During tests carried out in a porous medium representative of a reservoir rock, air injection was stopped to interrupt the reactions. A preliminary investigation has been described previously (8). [Pg.410]

For oil A, ahead of the coke zone, the amount of organic carbon in S0+S1+S2 has decreased from 6 g/100 g of rock (initial amount in the porous medium) to 3 g/100 g- The higher decrease can... [Pg.412]

The material balance is consistent with the results obtained by OSA (S2+S4 in g/100 g). For oil A, the coke zone is very narrow and the coke content is very low (Table III). On the contrary, for all the other oils, the coke content reaches higher values such as 4.3 g/ 100 g (oil B), 2.3 g/ioo g (oil C), 2.5 g/ioo g (oil D), 2.4/100 g (oil E). These organic residues have been studied by infrared spectroscopy and elemental analysis to compare their compositions. The areas of the bands characteristic of C-H bands (3000-2720 cm-1), C=C bands (1820-1500 cm j have been measured. Examples of results are given in Fig. 4 and 5 for oils A and B. An increase of the temperature in the porous medium induces a decrease in the atomic H/C ratio, which is always lower than 1.1, whatever the oil (Table III). Similar values have been obtained in pyrolysis studies (4) Simultaneously to the H/C ratio decrease, the bands characteristics of CH and CH- groups progressively disappear. The absorbance of the aromatic C-n bands also decreases. This reflects the transformation by pyrolysis of the heavy residue into an aromatic product which becomes more and more condensed. Depending on the oxygen consumption at the combustion front, the atomic 0/C ratio may be comprised between 0.1 and 0.3 ... [Pg.415]

The tendency to coke formation also increases again, as might be expected, in the liquefaction of medium and low volatile bituminous coals. [Pg.33]

Coal Char Coal char is, generically, the nonagglomerated, non-fusible residue from the thermal treatment of coal however, it is more specifically the solid residue from low- or medium-temperature carbonization processes. Char is used as a fuel or a carbon source. Chars have compositions intermediate between those of coal and coke the volatile matter, sulfur content, and heating values of the chars are lower, and the ash content is higher, than those of the original coal. [Pg.7]


See other pages where Coke media is mentioned: [Pg.819]    [Pg.96]    [Pg.64]    [Pg.81]    [Pg.344]    [Pg.346]    [Pg.348]    [Pg.179]    [Pg.199]    [Pg.215]    [Pg.243]    [Pg.244]    [Pg.274]    [Pg.443]    [Pg.2361]    [Pg.210]    [Pg.410]    [Pg.392]    [Pg.186]    [Pg.70]    [Pg.252]    [Pg.95]    [Pg.410]    [Pg.425]    [Pg.26]    [Pg.321]    [Pg.231]    [Pg.247]    [Pg.287]    [Pg.296]    [Pg.39]    [Pg.559]    [Pg.102]    [Pg.241]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



© 2024 chempedia.info