Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cohesive strength adhesive

Neoprene—phenohc contact adhesives, known for thein high green strength and peel values, contain a resole-type resin prepared from 4-/-butylphenol. The alkyl group increases compatibiHty and reduces cross-linking. This resin reacts or complexes with the metal oxide, eg, MgO, contained in the formulation, and increases the cohesive strength of the adhesive. In fact, the reactivity with MgO is frequently measured to determine the effectiveness of heat-reactive phenoHcs in the formulation. [Pg.303]

By employing additives to improve interfacial adhesion and the cohesive strength of the mbber phase, natural mbber can compete with ethylene—propylene mbbers as an impact modifier for polypropylene. These hard grades, containing between 15 and 25% natural mbber, have the potential for use in the automotive and domestic markets, eg, in bumpers, spoilers, grilles, electrical connectors, and floor tiles. [Pg.271]

Polyurethane adhesives are known for excellent adhesion, flexibihty, toughness, high cohesive strength, and fast cure rates. Polyurethane adhesives rely on the curing of multifunctional isocyanate-terrninated prepolymers with moisture or on the reaction with the substrate, eg, wood and ceUulosic fibers. Two-component adhesives consist of an isocyanate prepolymer, which is cured with low equivalent weight diols, polyols, diamines, or polyamines. Such systems can be used neat or as solution. The two components are kept separately before apphcation. Two-component polyurethane systems are also used as hot-melt adhesives. [Pg.350]

Adhesives. Poly(vinyl alcohol) is used as a component in a wide variety of general-purpose adhesives to bond ceUulosic materials, such as paper and paperboard, wood textiles, some metal foils, and porous ceramic surfaces, to each other. It is also an effective binder for pigments and other finely divided powders. Both fully and partially hydrolyzed grades are used. Sensitivity to water increases with decreasing degree of hydrolysis and the addition of plasticizer. Poly(vinyl alcohol) in many appHcations is employed as an additive to other polymer systems to improve the cohesive strength, film flexibiUty, moisture resistance, and other properties. It is incorporated into a wide variety of adhesives through its use as a protective coUoid in emulsion p olymerization. [Pg.488]

One of the other benefits of incorporating polar monomers in the PSA is the enhancement in cohesive strength. This can be observed in the form of higher shear holding in a static shear test and/or better creep resistance of the adhesive when subject to a constant load. [Pg.490]

Similar to the tackifiers discussed earlier, plasticizers have a very dramatic softening effect on the rubbery plateau modulus of the PSA. For this reason, high levels of plasticizers have to be avoided to maintain good cohesive strength in the adhesive, especially at elevated temperatures. Indeed, if high cohesive strength is desired, the amount of plasticizer used in a PSA is typically kept to a minimum, if used at all. [Pg.505]

Other polymers used in the PSA industry include synthetic polyisoprenes and polybutadienes, styrene-butadiene rubbers, butadiene-acrylonitrile rubbers, polychloroprenes, and some polyisobutylenes. With the exception of pure polyisobutylenes, these polymer backbones retain some unsaturation, which makes them susceptible to oxidation and UV degradation. The rubbers require compounding with tackifiers and, if desired, plasticizers or oils to make them tacky. To improve performance and to make them more processible, diene-based polymers are typically compounded with additional stabilizers, chemical crosslinkers, and solvents for coating. Emulsion polymerized styrene butadiene rubbers (SBRs) are a common basis for PSA formulation [121]. The tackified SBR PSAs show improved cohesive strength as the Mooney viscosity and percent bound styrene in the rubber increases. The peel performance typically is best with 24—40% bound styrene in the rubber. To increase adhesion to polar surfaces, carboxylated SBRs have been used for PSA formulation. Blends of SBR and natural rubber are commonly used to improve long-term stability of the adhesives. [Pg.510]

Neoprene AF ( 963). It is a polychloroprene modified with methacrylic acid. Although it is a slow-crystallizing elastomer, the cohesive strength develops very rapidly and it has improved creep resistance at high temperature compared with Neoprene AC or AD. The improved properties of Neoprene AF are derived from the interaction between the carboxyl functionality with the metal oxides added in the solvent-borne polychloroprene adhesives. [Pg.593]

Rubber-grade resins are mostly in the softening point range 70-100°C R B. A deviation of 5-10°C in softening point may cause problems. The softening point of a resin affects the properties of adhesives. Hence, for pressure-sensitive rubber adhesives the decrease in the softening point of the resin produces a more tacky adhesive with less cohesive strength. [Pg.614]

To produce a suitable rubber base adhesive, three key aspects are required (I) tack and wetting properties (2) adhesive strength (3) cohesive strength. [Pg.619]

Cohesive strength is the internal strength of an adhesive or the ability of the adhesive to resist splitting. Unlike tack and adhesion strength, cohesive strength is not influenced by the substrate. [Pg.619]

Reinforcing agents can be added to increase the cohesive strength of NR adhesives. Carbon blacks have been extensively used, but polyfunctional... [Pg.647]

Cohesive strength of these adhesives can be modified by blending butyl rubber and polyisobutylene. Higher strength is obtained by using high molecular weight PIB or butyl rubber. On the other hand, blends of butyl rubber or PIB with chlorinated butyl rubber show improved cure properties. [Pg.650]

Tackifiers. Resins are generally added to adjust the desired tack. In general, resins must be used with plasticizers to obtain a good balance between tack and cohesive strength. Typical tackifiers are polyterpenes, although hydrocarbon resins and modified rosins and rosin esters can also be used. In some cases, terpene-phenolics or phenol-formaldehyde resins are added to increase adhesion. [Pg.651]


See other pages where Cohesive strength adhesive is mentioned: [Pg.88]    [Pg.675]    [Pg.641]    [Pg.29]    [Pg.88]    [Pg.675]    [Pg.641]    [Pg.29]    [Pg.440]    [Pg.358]    [Pg.28]    [Pg.99]    [Pg.260]    [Pg.57]    [Pg.57]    [Pg.245]    [Pg.539]    [Pg.546]    [Pg.546]    [Pg.3]    [Pg.4]    [Pg.398]    [Pg.398]    [Pg.460]    [Pg.475]    [Pg.488]    [Pg.490]    [Pg.493]    [Pg.498]    [Pg.510]    [Pg.516]    [Pg.520]    [Pg.523]    [Pg.528]    [Pg.530]    [Pg.589]    [Pg.590]    [Pg.592]    [Pg.646]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



Adhesion strength

Adhesive and Cohesive Bond Strength

Adhesive cohesion

Cohesion

Cohesiveness

Cohesives

Cohesivity

Flexible adhesive sealants cohesive strength

© 2024 chempedia.info