Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt olefins

A. Cobalt-Olefin and Alkali Metal-Cobalt-Olefin Complexes... [Pg.97]

Isolable alkali metal-containing and alkali metal-free intermediates are involved in the course of the formation of the new alkali metal-cobalt-olefin complexes (27) (yield 70-90%) (43, 47). [Pg.113]

In contrast to the dilithium-nickel-olefin complexes (Section III), the alkali metal-cobalt-olefin complexes Am[Co(C=C)4] (27) have a strong tendency to dissociate into ions just as Am[Co(CO)4] compounds do (52). The specific conductivities of 0.25 M THF solutions of 27 are x 10-3 O-1 cm-1 (-30°C). The values correspond to the values found for the saltlike nickel compounds 5 (Section II). That the complexes 27 can also... [Pg.114]

Process Technology. In a typical oxo process, primary alcohols are produced from monoolefins in two steps. In the first stage, the olefin, hydrogen, and carbon monoxide [630-08-0] react in the presence of a cobalt or rhodium catalyst to form aldehydes, which are hydrogenated in the second step to the alcohols. [Pg.457]

Rhodium Ca.ta.lysts. Rhodium carbonyl catalysts for olefin hydroformylation are more active than cobalt carbonyls and can be appHed at lower temperatures and pressures (14). Rhodium hydrocarbonyl [75506-18-2] HRh(CO)4, results in lower -butyraldehyde [123-72-8] to isobutyraldehyde [78-84-2] ratios from propylene [115-07-17, C H, than does cobalt hydrocarbonyl, ie, 50/50 vs 80/20. Ligand-modified rhodium catalysts, HRh(CO)2L2 or HRh(CO)L2, afford /iso-ratios as high as 92/8 the ligand is generally a tertiary phosphine. The rhodium catalyst process was developed joindy by Union Carbide Chemicals, Johnson-Matthey, and Davy Powergas and has been Hcensed to several companies. It is particulady suited to propylene conversion to -butyraldehyde for 2-ethylhexanol production in that by-product isobutyraldehyde is minimized. [Pg.458]

Often the aldehyde is hydrogenated to the corresponding alcohol. In general, addition of carbon monoxide to a substrate is referred to as carbonylation, but when the substrate is an olefin it is also known as hydroformylation. The eady work on the 0x0 synthesis was done with cobalt hydrocarbonyl complexes, but in 1976 a low pressure rhodium-cataly2ed process was commerciali2ed that gave greater selectivity to linear aldehydes and fewer coproducts. [Pg.166]

The mixture of carbon monoxide and hydrogen is enriched with hydrogen from the water gas catalytic (Bosch) process, ie, water gas shift reaction, and passed over a cobalt—thoria catalyst to form straight-chain, ie, linear, paraffins, olefins, and alcohols in what is known as the Fisher-Tropsch synthesis. [Pg.62]

Linear terminal olefins are the most reactive in conventional cobalt hydroformylation. Linear internal olefins react at less than one-third that rate. A single methyl branch at the olefinic carbon of a terminal olefin reduces its reaction rate by a factor of 10 (2). For rhodium hydroformylation, linear a-olefins are again the most reactive. For example, 1-butene is about 20—40 times as reactive as the 2-butenes (3) and about 100 times as reactive as isobutylene. [Pg.465]

The stringency of the conditions employed in the unmodified cobalt 0x0 process leads to formation of heavy trimer esters and acetals (2). Although largely supplanted by low pressure ligand-modified rhodium-catalyzed processes, the unmodified cobalt 0x0 process is stiU employed in some instances for propylene to give a low, eg, - 3.3-3.5 1 isomer ratio product mix, and for low reactivity mixed and/or branched-olefin feedstocks, eg, propylene trimers from the polygas reaction, to produce isodecanol plasticizer alcohol. [Pg.466]

The mixture can be separated by distillation. The primary phosphine is recycled for use ia the subsequent autoclave batch, the secondary phosphine is further derivatized to the corresponding phosphinic acid which is widely employed ia the iadustry for the separation of cobalt from nickel by solvent extraction. With even more hindered olefins, such as cyclohexene [110-83-8] the formation of tertiary phosphines is almost nondetectable. [Pg.319]

The switch from the conventional cobalt complex catalyst to a new rhodium-based catalyst represents a technical advance for producing aldehydes by olefin hydroformylation with CO, ie, by the oxo process (qv) (82). A 200 t/yr CSTR pilot plant provided scale-up data for the first industrial,... [Pg.522]

The reactive species that iaitiate free-radical oxidatioa are preseat ia trace amouats. Exteasive studies (11) of the autoxidatioa mechanism have clearly estabUshed that the most reactive materials are thiols and disulfides, heterocycHc nitrogen compounds, diolefins, furans, and certain aromatic-olefin compounds. Because free-radical formation is accelerated by metal ions of copper, cobalt, and even iron (12), the presence of metals further compHcates the control of oxidation. It is difficult to avoid some metals, particularly iron, ia fuel systems. [Pg.414]

Another butadiene oxidation process to produce butanediol is based on the 1,4-addition of /-butyl hydroperoxide to butadiene (108). Cobalt on siHca catalyzes the first step. This is followed by hydrogenation of the resulting olefinic diperoxide to produce butanediol and /-butyl alcohol. [Pg.343]

Hydroformylation, or the 0X0 process, is the reaction of olefins with CO and H9 to make aldehydes, which may subsequently be converted to higher alcohols. The catalyst base is cobalt naph-thenate, which transforms to cobalt hydrocarbonyl in place. A rhodium complex that is more stable and mnctions at a lower temperature is also used. [Pg.2094]

KHAND PAUSON Cyclopentenone Annulat/on Cyclopentenone synthesis from cartxin monoxide acetylene and olefins, cobalt carbonyl catalyzed. [Pg.201]

Effect of Catalyst The catalysts used in hydrotreating are molybdena on alumina, cobalt molybdate on alumina, nickel molybdate on alumina or nickel tungstate. Which catalyst is used depends on the particular application. Cobalt molybdate catalyst is generally used when sulfur removal is the primary interest. The nickel catalysts find application in the treating of cracked stocks for olefin or aromatic saturation. One preferred application for molybdena catalyst is sweetening, (removal of mercaptans). The molybdena on alumina catalyst is also preferred for reducing the carbon residue of heating oils. [Pg.67]

In treating cracked stocks such as steam cracked naphtha or visbreaker naphtha, which are highly olefinic in nature, nickel molybdate or nickel tungstate catalysts are generally employed. These catalysts have much higher activity for olefin samration reactions than does cobalt molybdate. [Pg.68]

Cj Hydroformation of CO with high-molecular weight olefins on either a cobalt or ruthenium complex bound to polymers. [Pg.243]

Catalytic reduction of thiophenes over cobalt catalysts leads to thiolane derivatives, or hydrocarbons. " Noncatalytic reductions of thiophenes by sodium or lithium in liquid ammonia leads, via the isomeric dihydrothiophenes, to complete destructions of the ring system, ultimately giving butenethiols and olefins. " Exhaustive chlorination of thiophene in the presence of iodine yields 2,2,3,4,5,5,-hexachloro-3-thiolene, Pyrolysis of thiophene at 850°C gives a... [Pg.104]

Alpha olefins could also be carbonylated in presence of an alcohol using a cobalt catalyst to produce esters ... [Pg.207]


See other pages where Cobalt olefins is mentioned: [Pg.42]    [Pg.113]    [Pg.148]    [Pg.409]    [Pg.42]    [Pg.113]    [Pg.148]    [Pg.409]    [Pg.104]    [Pg.188]    [Pg.457]    [Pg.457]    [Pg.458]    [Pg.466]    [Pg.465]    [Pg.380]    [Pg.506]    [Pg.346]    [Pg.118]    [Pg.521]    [Pg.339]    [Pg.414]    [Pg.167]    [Pg.200]    [Pg.534]    [Pg.2094]    [Pg.11]    [Pg.13]    [Pg.14]    [Pg.14]    [Pg.14]    [Pg.43]    [Pg.165]    [Pg.309]   
See also in sourсe #XX -- [ Pg.391 , Pg.688 ]




SEARCH



© 2024 chempedia.info