Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt complexes isomerization

Quite recently, Ciampolini and coworkers have reported the synthesis of two isomeric mked oxygen-phosphorus macrocycles and the crystal structures of their cobalt complexes. Synthesis of macrocycle 27 was accomplished by condensation of 1,2-bis-(phenylphosphino)ethane dianion with 2,2 -dichlorodiethyl ether in THE. The two isomers of 27 were isolated in 1.5% and 2% yield. The synthesis is formulated in Eq. (6.17), below. [Pg.275]

Cfs-butene should lead initially to the anti form trrms-butene should lead initially to the syn form and 1-butene should give rise initially to both. The equilibrium distribution of syn and anti forms usually differs greatly from the equilibrium distribution of cis- and frans-butene for cobalt complexes 59, 60) the syn form, precursor of irans-butene, is by far the most stable. By way of contrast for the corresponding carbanion, the cis anion seems by far the more stable. This preference for the cis carbanion is presumed to be the source of the high initial cis-to-trans ratio in the initial products of base catalyzed isomerization. In the base catalyzed isomerization of more complex cf-s-olefins (cfs-S-methyl-stilbene), the ions corresponding to syn and anti are not interconvertible and cis-trans isomeriza-... [Pg.41]

The [Co(CN)5]3 complex is an effective catalyst for some reactions, particularly the isomerization of alkenes. Newer and more efficient catalysts have been developed for some of the processes, but the catalytic behavior of the pentacyanocobalt(II) ion is also significant from a historical perspective. In reactions such as that shown in Eq. (22.10), two Co2+ ions increase one unit in oxidation state, instead of the more common situation in which one metal ion increases by two units in oxidation state. The cobalt complex also reacts with CIT3I, Cl2, and H202, which are indicated as X-Y in the equation... [Pg.784]

The next five transition metals iron, cobalt, nickel, copper and zinc are of undisputed importance in the living world, as we know it. The multiple roles that iron can play will be presented in more detail later in Chapter 13, but we can already point out that, with very few exceptions, iron is essential for almost all living organisms, most probably because of its role in forming the amino acid radicals required for the conversion of ribonucleotides to deoxyribonucleotides in the Fe-dependent ribonucleotide reductases. In those organisms, such as Lactobacilli6, which do not have access to iron, their ribonucleotide reductases use a cobalt-based cofactor, related to vitamin B12. Cobalt is also used in a number of other enzymes, some of which catalyse complex isomerization reactions. Like cobalt, nickel appears to be much more extensively utilized by anaerobic bacteria, in reactions involving chemicals such as CH4, CO and H2, the metabolism of which was important... [Pg.8]

A ligand which links the cobalt complexes with those of chromium and iron is the scorpiand diammac in its isomeric trans and cis conformations (see Scheme 5). [Pg.282]

Such a configuration should on replacement of one ammonia molecule by acidic or other monovalent radicle yield only one compound, and this is proved to be the case. On the other hand, if two acidic, or other groups replace two ammonia groups in the complex, isomerism should be possible, yielding two isomers of the formula [M(NII3)4R2 R. In the case of dinitro-tctrammino-cobaltic nitrate, [Co(NIi2)4(N02)2 N03, two isomeric forms are known to exist, one brown in colour, the other yellow. The two substances may be represented by the following formula —... [Pg.24]

Both the rhodium and the cobalt complexes catalyze olefin isomerization as well as olefin hydroformylation. In the case of the rhodium(I) catalysts, the amount of isomerization decreases as the ligands are altered in the order CO > NR3 > S > PR3. When homogeneous and supported amine-rhodium complexes were compared, it was found that they both gave similar amounts of isomerization, whereas with the tertiary phosphine complexes the supported catalysts gave rather less olefin isomerization than their homogeneous counterparts (44, 45). [Pg.219]

Geometrical isomerism Geometrical isomerism is possible only in hexacoordinate complexes and in the case of 2 1 metal, e.g. chromium and cobalt, complexes arises from coordination of the ligand in a meridional (81) or a facial (82) mode in an octahedral complex. In the former case only an enantiomorphic pair of isomers is possible, but in the latter the possibility exists of four enantiomorphic pairs and a centrosymmetric isomer (Figure 1). [Pg.63]

Copper and nickel Chromium and cobalt N -Np Na-Np Meridional/facial coordination Azo/hydrazone tautomerism Non-planarity due to azo/hydrazone tautomerism Formation of two copper and two nickel complexes by unsymmetrical o.o -dihydroxyazobenzenes78 Detection of isomeric 2 1 chromium complexes 79 proton magnetic resonance80 Isolation of isomeric 2 1 chromium and cobalt complexes 86 87 limited X-ray crystallographic89 90 Proton magnetic resonance80 Detection of five isomeric 2 1 chromium complexes of symmetrical o.o -dihydroxydiarylazo compounds... [Pg.73]

It must be concluded, therefore, that the ligands do not become completely detached from the metal ion in isomerization reactions. Comparable results have been observed in the isomerization95 of potassium diaquodioxalatochromium(III) and the racemization96 of optically active potassium tris(oxalato)chromium(III) when no exchange with free ligand in solution occurs. Thus, although it is not practicable to take advantage of the desirable properties of individual isomers of 2 1 chromium and cobalt complexes of tridentate azo compounds because of the facility with which such compounds isomerize in solution, the technically important unsymmetrical 2 1 complexes are capable of practical application because they show little or no tendency to disproportionate in solution. [Pg.73]

The conditions under which cobalt hydrocarbonyl was reacted with olefin were also found to affect the distribution of products and the extent of isomerization of excess olefin (62, 73, 147). At low temperatures (0° C) under carbon monoxide (1 atm) very little isomerization of excess 1-pentene occurred and the main product was the terminal aldehyde. Under nitrogen or under carbon monoxide at 25° C, extensive olefin isomerization occurred and the branched aldehyde was mainly produced. The olefin isomerization is most satisfactorily accounted for by an equilibrium between alkylcobalt and olefin-hydride cobalt complexes [Eqs. (9) and (10)]. The carbon monoxide inhibition is most easily explained if the isomerization proceeds via the tricarbonyls rather than tetracarbonyls. This also explains why ethylcobalt tetracarbonyl is not in equilibrium with hydrocarbonyl and ethylene under conditions where the isomerization is rapid (62, 73). [Pg.124]

The catalytic isomerization of meso-epoxides to allylic alcohols has been achieved with chiral cobalt complexes, in particular with cobalamin (vitamin B12) [47, 48]. [Pg.374]

From the viewpoint of stereochemistry the most interesting metal complexes are the octahedrally coordinated 1 2 chromium and cobalt complex dyes, which are medially metallized azo and azomethine compounds with functional groups in the o- and o -positions. Three types of isomerism can be discriminated geometrical, N-a, 3, and that arising from azo-hydrazone tautomerism. [Pg.94]

Chiral crystals generated from non-chiral molecules have served as reactants for the performance of so-called absolute asymmetric synthesis. The chiral environments of such crystals exert asymmetric induction in photochemical, thermal and heterogeneous reactions [41]. Early reports on successful absolute asymmetric synthesis include the y-ray-induced isotactic polymerization of frans-frans-l,3-pentadiene in an all-frans perhydropheny-lene crystal by Farina et al. [42] and the gas-solid asymmetric bromination ofpjp -chmethyl chalcone, yielding the chiral dibromo compound, by Penzien and Schmidt [43]. These studies were followed by the 2n + 2n photodimerization reactions of non-chiral dienes, resulting in the formation of chiral cyclobutanes [44-48]. In recent years more than a dozen such syntheses have been reported. They include unimolecular di- r-methane rearrangements and the Nourish Type II photoreactions [49] of an achiral oxo- [50] and athio-amide [51] into optically active /Mactams, photo-isomerization of alkyl-cobalt complexes [52], asymmetric synthesis of two-component molecular crystals composed from achiral molecules [53] and, more recently, the conversion of non-chiral aldehydes into homochiral alcohols [54,55]. [Pg.128]

Only two reports deal with the reactions of cobalt complexes with HFA. Insertion into the cobalt-hydrogen bond of a hydride complex affords a cobalt hexafluoroisopropylate 136a). An oxolene(2) is formed from an alkylcobalt compound and HFA 66). For mechanistic reasons the authors favor the depicted structure 157 over the isomeric oxolene (3) ring reported for the analogous iron complex 149 174). [Pg.286]

Scheme 4 shows a platinum catalyst 1 containing such a bis-SPO bidentate ligand anion, designed for the hydroformylation of ethylene and of 1-heptene, and various other, similarly built, platinum catalysts. Catalyst 1 has an activity comparable to that of the commercial cobalt catalysts that were used at the time and displays a higher selectivity for linear products than the cobalt-containing catalysts (66). Like the latter, the platinum complex exhibits hydrogenation activity to give, in part, alcohols in addition to aldehydes and also produces alkanes (an undesired reaction that implies a loss of feedstock). The catalysts are also active for isomerization, as are the cobalt complexes, and for internal heptene hydroformylation (Table 1), with formation of 60% linear products. [Pg.94]


See other pages where Cobalt complexes isomerization is mentioned: [Pg.88]    [Pg.197]    [Pg.433]    [Pg.718]    [Pg.71]    [Pg.969]    [Pg.377]    [Pg.112]    [Pg.264]    [Pg.265]    [Pg.82]    [Pg.328]    [Pg.166]    [Pg.467]    [Pg.517]    [Pg.635]    [Pg.249]    [Pg.797]    [Pg.66]    [Pg.374]    [Pg.104]    [Pg.88]    [Pg.94]    [Pg.172]    [Pg.327]    [Pg.275]    [Pg.82]    [Pg.201]    [Pg.247]    [Pg.133]    [Pg.517]    [Pg.635]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



Cobalt isomerizations

Complex isomerism

© 2024 chempedia.info