Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coalescence continuous phase

The role of coalescence within a contactor is not always obvious. Sometimes the effect of coalescence can be inferred when the holdup is a factor in determining the Sauter mean diameter (67). If mass transfer occurs from the dispersed (d) to the continuous (e) phase, the approach of two drops can lead to the formation of a local surface tension gradient which promotes the drainage of the intervening film of the continuous phase (75) and thereby enhances coalescence. It has been observed that d-X.o-c mass transfer can lead to the formation of much larger drops than for the reverse mass-transfer direction, c to... [Pg.69]

Liquid diops, suspended in a continuous liquid medium, separate according to the same laws as solid paiticles. Aftei reaching a boundary, these drops coalesce to form a second continuous phase separated from the medium by an interface that may be well- or ill-defined. The discharge of these separated layers is controlled by the presence of dams in the flow paths of the phases. The relative radii of these dams can be shown by simple hydrostatic considerations to determine the radius of the interface between the two separated layers. The radius is defined by... [Pg.403]

The sequence, flocculation — coalescence — separation, is compHcated by the fact that creaming or sedimentation occurs and that this process is determined by the droplet size. The sedimentation velocity is monitored by the oppositely directed forces which form the buoyancy and the viscous drag of the continuous phase on the droplet ... [Pg.198]

Coalescence The coalescence of droplets can occur whenever two or more droplets collide and remain in contact long enough for the continuous-phase film to become so thin that a hole develops and allows the liquid to become one body. A clean system with a high interfacial tension will generally coalesce quite rapidly. Particulates and polymeric films tend to accumulate at droplet surfaces and reduce the rate of coalescence. This can lead to the ouildup of a rag layer at the liquid-hquid interface in an extractor. Rapid drop breakup and rapid coalescence can significantly enhance the rate of mass transfer between phases. [Pg.1470]

Holdup and Flooding At this point it is useful to introduce the concepts of holdup and flooding in column contactors. It is normal practice to select the phase which preferentially wets the internals of the column as the continuous phase. This then allows the dispersed phase to exist as discrete droplets within the column. If the dispersed phase were to preferentially wet the internals, this could cause the dispersion to prematurely coalesce and pass through the column as rivulets or streams which would decrease interfacial area and therefore column efficiency. [Pg.1475]

In the LPG contactor the amine is normally the continuous phase with the amine-hydrocarbon interface at the top of the contactor. This interface level controls the amine flow out of the contactor. (Some liquid/liquid contactors are operated with the hydrocarbon as the continuous phase. In this case, the interface is controlled at the bottom of the contactor.) The treated C3/C4 stream leaves the top of the contactor. A final coalescer is often installed to recover the carry-over amine. [Pg.36]

The two models commonly used for the analysis of processes in which axial mixing is of importance are (1) the series of perfectly mixed stages and (2) the axial-dispersion model. The latter, which will be used in the following, is based on the assumption that a diffusion process in the flow direction is superimposed upon the net flow. This model has been widely used for the analysis of single-phase flow systems, and its use for a continuous phase in a two-phase system appears justified. For a dispersed phase (for example, a bubble phase) in a two-phase system, as discussed by Miyauchi and Vermeulen, the model is applicable if all of the dispersed phase at a given level in a column is at the same concentration. Such will be the case if the bubbles coalesce and break up rapidly. However, the model is probably a useful approximation even if this condition is not fulfilled. It is assumed in the following that the model is applicable for a continuous as well as for a dispersed phase in gas-liquid-particle operations. [Pg.87]

An effective hquid-liquid reactor may be designed to obtain drops that continuously break up and coalesce, or it may be designed to obtain very small drops that have very efficient mass transfer and follow the continuous phase with a low rate of coalescence. The former will require a much larger reactor, but the separation of the phases after reaction is simpler. [Pg.351]

In terms of measuring emulsion microstructure, ultrasonics is complementary to NMRI in that it is sensitive to droplet flocculation [54], which is the aggregation of droplets into clusters, or floes, without the occurrence of droplet fusion, or coalescence, as described earlier. Flocculation is an emulsion destabilization mechanism because it disrupts the uniform dispersion of discrete droplets. Furthermore, flocculation promotes creaming in the emulsion, as large clusters of droplets separate rapidly from the continuous phase, and also promotes coalescence, because droplets inside the clusters are in close contact for long periods of time. Ideally, a full characterization of an emulsion would include NMRI measurements of droplet size distributions, which only depend on the interior dimensions of the droplets and therefore are independent of flocculation, and also ultrasonic spectroscopy, which can characterize flocculation properties. [Pg.435]

As the dispersed phase moves, the bubbles (gas in liquid) or drops (liquid in liquid or gas) may either coalesce or rupture, depending on the conditions existing. Sometimes packings or stirrers are introduced to facilitate these phenomena. When the dispersed-phase particles arrive at the top of the column, they coalesce and form a bulk interface with the continuous phase, across which transfer processes can continue. [Pg.257]

In all these operations involving bubbles and drops, three stages have to be studied, viz. (i) the formation of bubbles or drops, (ii) the movement of bubbles or drops through the continuous phase and possible coalescence therein, and (iii) the formation of the interface. This review is an attempt to understand the first of the three aspects of the study, especially in the case of submerged orifices. [Pg.257]

The settler. In this unit, gravitational settling frequently occurs and, in addition, coalescence of droplets must take place. Baffles are fitted at the inlet in order to aid distribution. The rates of sedimentation and coalescence increase with drop size, and therefore excessive agitation resulting in the formation of very small drops should be avoided. The height of the dispersion band ZB is influenced by the throughput since a minimum residence time is required for coalescence to occur. This height Zb is related to the dispersed and continuous phase superficial velocities, //,/ and uc by ... [Pg.744]

Flooding-point. Because the flooding-point is no longer synonymous with that for spray towers, equations 13.34 and 13.35 predict only the upper transition point. Dell and Pratt 30 1 adopted a semi-empirical approach for the flooding-point by consideration of the forces acting on the separate dispersed and continuous phase channels which form when coalescence sets in just below the flooding-point. The following expression correlates data to within 20 per cent ... [Pg.758]

In order to prevent coalescence of the dispersed drops, van Duck(36) and others have devised methods of providing the whole of the continuous phase with a pulsed motion. This may be done, either by some mechanical device, or by the introduction of compressed air. [Pg.760]

From experiments, equations have been derived that enable calculation of the minimum velocity in the nozzle, the nozzle velocity, and the Sauter diameter at the drop size minimum. They provide the basis for the correct design of a sieve tray [3,4]. Figure 9.4a shows the geometric design of sieve trays and their arrangement in an extraction column. Let us again consider toluene-phenol-water as the liquid system. The water continuous phase flows across the tray and down to the lower tray through a downcomer. The toluene must coalesce into a continuous layer below each tray and reaches... [Pg.375]


See other pages where Coalescence continuous phase is mentioned: [Pg.555]    [Pg.555]    [Pg.70]    [Pg.74]    [Pg.416]    [Pg.406]    [Pg.520]    [Pg.1442]    [Pg.1475]    [Pg.1476]    [Pg.1476]    [Pg.1479]    [Pg.1480]    [Pg.178]    [Pg.125]    [Pg.554]    [Pg.203]    [Pg.220]    [Pg.79]    [Pg.433]    [Pg.434]    [Pg.271]    [Pg.145]    [Pg.146]    [Pg.2]    [Pg.219]    [Pg.334]    [Pg.414]    [Pg.354]    [Pg.292]    [Pg.324]    [Pg.358]    [Pg.751]    [Pg.755]    [Pg.755]    [Pg.371]   
See also in sourсe #XX -- [ Pg.1555 ]




SEARCH



Coalesce

Coalescence

Coalescent

Coalescents

Coalescer

Coalescers

Coalescing

© 2024 chempedia.info