Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cluster complexes, valence electrons

For trinuclear cluster complexes, open (chain) or closed (cycHc) stmctures are possible. Which cluster depends for the most part on the number of valence electrons, 50 in the former and 48 in the latter. The 48-valence electron complex Os2(CO)22 is observed in the cycHc stmcture (7). The molecule possesses a triangular arrangement of osmium atoms with four terminal CO ligands coordinated in a i j -octahedral array about each osmium atom. The molecule Ru (00) 2 is also cycHc and is isomorphous with the osmium analogue. [Pg.64]

For tetranuclear cluster complexes, three stmcture types are observed tetrahedral open tetrahedral (butterfly) or square planar, for typical total valence electron counts of 60, 62, and 64, respectively. The earliest tetracarbonyl cluster complexes known were Co4(CO)22, and the rhodium and iridium analogues. The... [Pg.64]

Syntheses, crystallization, structural identification, and chemical characterization of high nuclearity clusters can be exceedingly difficult. Usually, several different clusters are formed in any given synthetic procedure, and each compound must be extracted and identified. The problem may be compounded by the instabiUty of a particular molecule. In 1962 the stmcture of the first high nuclearity carbide complex formulated as Fe (CO) C [11087-47-1] was characterized (40,41) see stmcture (12). This complex was originally prepared in an extremely low yield of 0.5%. This molecule was the first carbide complex isolated and became the foremnner of a whole family of carbide complexes of square pyramidal stmcture and a total of 74-valence electrons (see also Carbides, survey). [Pg.65]

P4) is closely similar with P-P distances of 216 pm (smaller than for P4 itself, 221pm). Indeed, a whole series of complexes has now been established with the same structure-motif and differing only in the number of valency electrons in the cluster some of these are summarized in Table 13.11. The number of valence electrons in all these complexes falls in the range 30-34 as predicted by R. Hoffmann and his colleagues.Many other cluster types incorporating differing numbers of Group 15 and transition metal atoms are now known and have been fully reviewed. ... [Pg.588]

In this way we come to class III complexes, i.e. complexes in which the two sites are indistinguishable and the element has a non-integral oxidation state (delocalized valence). Usually one divides this class in two subclasses. In class IIIA the delocalization of the valence electrons takes place within a cluster of equivalent metal ions only. An example is the [NbgCli2] ion in which there are six equivalent metal ions with oxidation state + 2.33. In class IIIB the delocalization is over the whole lattice. Examples are the linear chain compound K2Pt(CN)4.Bro.3o. 3H2O with a final oxidation state for platinum of 2.30, and three-dimensional bronzes like Na WOg. [Pg.176]

For more electropositive elements, which have an inferior number of valence electrons in the first place, and which in addition have to supply electrons to a more electronegative partner, the number of available electrons is rather small. They can gain electrons in two ways first, as far as possible, by complexation, i.e. by the acquisition of ligands and second, by combining their own atoms with each other. This can result in the formation of clusters. A cluster is an accumulation of three or more atoms of the same element or of similar elements that are directly linked with each other. If the accumulation of atoms yields a sufficient number of electrons to allow for one electron pair for every connecting line between two adjacent atoms, then each of these lines can be taken to be a 2c2e bond just as in a common valence bond (Lewis) formula. Clusters of this kind have been called electron precise. [Pg.138]

L = axial ligands, n = 0, 1, 2) have been extensively investigated regarding their specific electronic, chemical, and physical properties [4], Particularly, oxo-centered triruthenium cluster complexes with bridging acetates attracted the most attention owing to their synthetic accessibility, multiple redox behavior, intriguing mixed-valence chemistry, and versatile catalytic properties [5-7]. [Pg.145]

A condition where metal ions within a coordination complex or cluster are present in more than one oxidation state. In such systems, there is often complete delocalization of the valence electrons over the entire complex or cluster, and this is thought to facilitate electron-transfer reactions. Mixed valency has been observed in iron-sulfur proteins. Other terms for this behavior include mixed oxidation state and nonintegral oxidation state. [Pg.481]

In bridged metal-metal bonded dimeric complexes, the relative importance of metal-metal and bridging ligand effects are more difficult to unravel. Dahl and his co-workers have elegantly exploited systematic crystallographic analyses to detail the stereochemical consequences of valence-electron addition or removal in dimeric metal complexes (46, 47, 65, 230) and clusters (66, 88, 204, 205, 213, 216, 222). Their experimental work has been neatly underpinned by nonparameterized approximate Hartree-Fock molecular orbital calculations (217) on the phosphido-bridged dimers [Cr2(CO)80ti-PR2)2]n"2 and [Mn2(CO)g(/i.-PR2)2]n (rt = 0, + 1, or +2) ... [Pg.39]

The three hexanuclear clusters are mixed valency complexes of two M(III) and four M(IV) centers, and the average oxidation state of the metal is +3.67. The number of cluster valence electrons is 14, which agrees with seven M—M bonds. Relatively short M-M distances for the intra- and intertriangles suggest that the clusters can be viewed as dimers of triangular clusters. Extension of the triangle condensation would lead to higher polymers. [Pg.80]

The chemistry of cluster complexes, e.g. of the sort [FeitSi, (SR) i,] 2, is of particular interest since such complexes are known to be close representations or synthetic analogues of the redox centres present in various iron-sulphur proteins. It is important to know whether the valence electrons are localized or delocalized in such complexes - in fact several studies by e.s.r., n.m.r., and, more recently, resonance Raman spectroscopy have shown that such clusters are delocalized rather than trapped-valence species. This result is linked with the most important biophysical property of iron-sulphur proteins, viz. that of electron transfer. Rapid electron transfer is possible if any consequential geometric rearrangements around the metal atom sites are small, as implied by many resonance Raman results on such cluster complexes (cf. the small-displacement approximation, which provides a basis for enhancement to fundamental but not to overtone bands) (22). Initial studies of [MSi,]2- ions (M = Mo or W) (23,24) have since been supplemented by studies of dinuclear species e.g. [(PhS)2FeS2MS2]2 (25) and cluster species... [Pg.63]

When the number of metal atoms in a cluster increases, the geometries of the clusters become more complex, and some are often structurally better described in terms of capped or decapped polyhedra and condensed polyhedra. For example, the first and second clusters listed in Table 19.4.3 are a capped octahedron and a bicapped octahedron, respectively. Consequently, capping or decapping with a transition-metal fragment to a deltapolyhedral cluster leads to an increase or decrease in the cluster valence electron count of 12. When a transition-metal atom caps a triangular face of the cluster, it forms three M-M bonds with the vertex atoms, so according to the 18-electron rule, the cluster needs an additional 18 - 6 = 12 electrons. The parent octahedron of [Os6(CO)is]2- has g = 86, the monocapped octahedron Osy(CO)2i has g = 98, and the bicapped octahedron [Oss(CO)22]2- hasg = 110. [Pg.717]

Almost no other element has as much diversity in its chemistry as does boron. One of the main reasons is that boron shows a great tendency to form bonds to other boron atoms, which results in complex cages and clusters. Because boron has three valence electrons, there is frequently formation of bonds that are more complex than the usual shared pair of electrons between two atoms. The chemistry is diverse also as a result of the existence of many binary borides and compounds in which a B-N group replaces a C-C unit. This is possible because each of these types of units has a total of eight valence shell electrons. [Pg.189]


See other pages where Cluster complexes, valence electrons is mentioned: [Pg.231]    [Pg.65]    [Pg.66]    [Pg.66]    [Pg.554]    [Pg.177]    [Pg.294]    [Pg.299]    [Pg.142]    [Pg.143]    [Pg.169]    [Pg.702]    [Pg.239]    [Pg.244]    [Pg.354]    [Pg.236]    [Pg.21]    [Pg.27]    [Pg.29]    [Pg.438]    [Pg.231]    [Pg.368]    [Pg.107]    [Pg.152]    [Pg.72]    [Pg.276]    [Pg.325]    [Pg.326]    [Pg.334]    [Pg.336]    [Pg.109]    [Pg.12]    [Pg.57]    [Pg.3]    [Pg.218]    [Pg.106]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Cluster complexes

Cluster complexes, valence

Cluster valence electron

Electron clusters

Valence Complexes

Valence electron

Valence electrons Valency

© 2024 chempedia.info