Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clotting extrinsic pathway

FIGURE 15.5 The cascade of activation steps leading to blood clotting. The intrinsic and extrinsic pathways converge at Factor X, and the final common pathway involves the activation of thrombin and its conversion of fibrinogen into fibrin, which aggregates into ordered filamentous arrays that become cross-linked to form the clot. [Pg.465]

Two pathways lead to fibrin clot formation the intrinsic and the extrinsic pathways. These pathways are not independent, as previously thought. However, this artificial distinction is retained in the following text to fa-cihtate their description. [Pg.598]

Initiation of the fibrin clot in response to tissue injury is carried out by the extrinsic pathway. How the intrinsic pathway is activated in vivo is unclear, but it involves a negatively charged surface. The intrinsic and extrinsic pathways converge in a final common path-vray involving the activation of prothrombin to thrombin and the thrombin-catalyzed cleavage of fibrinogen to form the fibrin clot. The intrinsic, extrinsic, and final common pathways are complex and involve many different proteins (Figure 51-1 and Table 51-1). In... [Pg.598]

A number of laboratory tests are available to measure the phases of hemostasis described above. The tests include platelet count, bleeding time, activated partial thromboplastin time (aPTT or PTT), prothrombin time (PT), thrombin time (TT), concentration of fibrinogen, fibrin clot stabifity, and measurement of fibrin degradation products. The platelet count quantitates the number of platelets, and the bleeding time is an overall test of platelet function. aPTT is a measure of the intrinsic pathway and PT of the extrinsic pathway. PT is used to measure the effectiveness of oral anticoagulants such as warfarin, and aPTT is used to monitor heparin therapy. The reader is referred to a textbook of hematology for a discussion of these tests. [Pg.608]

The coagulation system that generates thrombin consists of intrinsic and extrinsic pathways. Both pathways are composed of a series of enzymatic reactions eventually producing thrombin, fibrin, and a stable clot. In parallel with the coagulation, the fibrinolytic system is activated locally. Plasminogen is converted to plasmin, which dissolves the fibrin mesh1 2 3 (Fig. 64—1). [Pg.987]

Although the final steps of the blood clotting cascade are identical, the initial steps can occur via two distinct pathways extrinsic and intrinsic. Both pathways are initiated when specific clotting proteins make contact with specific surface molecules exposed only upon damage to a blood vessel. Clotting occurs much more rapidly when initiated via the extrinsic pathway. [Pg.330]

The initial steps of the intrinsic pathway are somewhat more complicated. This system requires the presence of clotting factors VIII, IX, XI and XII, all of which, except for factor VIII, are endo-acting proteases. As in the case of the extrinsic pathway, the intrinsic pathway is triggered upon exposure of the clotting factors to proteins present on the surface of body tissue exposed by vascular injury. These protein binding/activation sites probably include collagen. [Pg.331]

Both intrinsic and extrinsic pathways generate activated factor X. This protease, in turn, catalyses the proteolytic conversion of prothrombin (factor II) into thrombin (Ha). Thrombin, in turn, catalyses the proteolytic conversion of fibrinogen (I) into fibrin (la). Individual fibrin molecules aggregate to form a soft clot. Factor XHIa catalyses the formation of covalent crosslinks between individual fibrin molecules, forming a hard clot (Figures 12.3 and 12.4). [Pg.332]

Figure 17.2 The intrinsic and extrinsic pathways involved in blood clotting. Both pathways converge to activate thrombin. Solid arrows represent biochemical conversions whereas dotted arrows represent either catalytic or activating actions. Fibrin is formed as monomers which polymerise to form fibrils. Within the fibrils, the fibrin monomers associate laterally which is facilitated by active XIII (ie Xllla). Thrombin activates XIII. Figure 17.2 The intrinsic and extrinsic pathways involved in blood clotting. Both pathways converge to activate thrombin. Solid arrows represent biochemical conversions whereas dotted arrows represent either catalytic or activating actions. Fibrin is formed as monomers which polymerise to form fibrils. Within the fibrils, the fibrin monomers associate laterally which is facilitated by active XIII (ie Xllla). Thrombin activates XIII.
Two separate pathways, intrinsic and extrinsic, lead to the formation of a fibrin clot. Both pathways must function for hemostasis. [Pg.111]

Extrinsic pathway Coagulation is activated by release of tissue thromboplastin, a factor not found in circulating blood. Clotting occurs in seconds because factor III bypasses the early reactions. [Pg.111]

But it still seems we haven t made much progress—now we have to go back and ask what activates Stuart factor. It turns out that it can be activated by two different routes, called the intrinsic and the extrinsic pathways. In the intrinsic pathway, all the proteins required for clotting are contained in the blood plasma in the extrinsic pathway, some clotting proteins occur on cells. Let s first examine the intrinsic pathway. (Please follow along using Figure 4-3.)... [Pg.84]

The intrinsic and extrinsic pathways cross over at several points. Hageman factor, activated by the intrinsic pathway, can switch on proconvertin of the extrinsic pathway. Convertin can then feed back into the intrinsic pathway to help activated PTA activate Christmas factor. Thrombin itself can trigger both branches of the clotting cascade by activating antihemophilic factor, which is required to help activated Christmas factor in the conversion of Stuart factor to its active form, and also by activating proconvertin. ... [Pg.85]

Initiation of blood coagulation (clotting) occurs through the contact activation pathway (intrinsic pathway) and the tissue factor (TF) pathway (extrinsic pathway). The contact activation pathway is quantitatively the most important, but is much slower to initiate the TF pathway is considered to be the primary pathway for the initiation of blood coagulation and affords a more rapid response (the so-called thrombin burst), which augments the contact activation pathway. Both pathways share a common pathway that converges at factor X with the production of thrombin (Figure 11.1). [Pg.172]

Figure 10.37. Blood-Clotting Cascade. A fibrin clot is formed by the interplay of the intrinsic, extrinsic, and final common pathways. The intrinsic pathway begins with the activation of factor XII (Hageman factor) by contact with abnormal surfaces produced by injury. The extrinsic pathway is triggered by trauma, which activates factor VII and releases a lipoprotein, called tissue factor, from blood vessels. Inactive forms of clotting factors are shown in red their activated counterparts (indicated by the subscript "a") are in yellow. Stimulatory proteins that are not themselves enzymes are shovm in blue. A striking feature of this process is that the activated form of one clotting factor catalyzes the activation of the next factor. Figure 10.37. Blood-Clotting Cascade. A fibrin clot is formed by the interplay of the intrinsic, extrinsic, and final common pathways. The intrinsic pathway begins with the activation of factor XII (Hageman factor) by contact with abnormal surfaces produced by injury. The extrinsic pathway is triggered by trauma, which activates factor VII and releases a lipoprotein, called tissue factor, from blood vessels. Inactive forms of clotting factors are shown in red their activated counterparts (indicated by the subscript "a") are in yellow. Stimulatory proteins that are not themselves enzymes are shovm in blue. A striking feature of this process is that the activated form of one clotting factor catalyzes the activation of the next factor.
The classical separation of the intrinsic and extrinsic pathways is a simplification but remains a useful in-vitro phenomenon for monitoring coagulation. Both in vivo and in vitro the systems are dependent on the presence of Ca ions and key in-vivo steps involve the formation of macromolecular complexes on membrane surfaces, usually those of platelets. Cascade reactions culminate in the generation of fibrin and its polymerisation by factor XIII to form a fibrin clot. [Pg.568]

Two pathways initiate a fibrin clot. Extrinsic path is mediated by tissue factor, also called thromboplastin. This membrane protein is exposed when pericytes are damaged. It binds to factor Vila in blood. Factor Vila is a protease and the phospholipid-VIIa-TF complex activates (converts) factor X by cleaving it to Xa. Intrinsic path is initiated by factor XII (Hageman factor), whose conformation is changed to a protease (XHa) by contact with a negatively charged surface such as RNA from damaged or necrotic cells. [Pg.187]

The extrinsic pathway is activated by tissue injury and is not of major concern in the clinical use of membrane devices. The intrinsic pathway, however, is initiated by a multitude of factors. Including interactions between serum proteins and exogenous materials. Hydrodynamic forces acting on platelets may also lead to the release of platelet factors that trigger the intrinsic pathway. Thus, the selection of membrane materials to minimize thrombogenesls cannot be fully separated from the design of devices to contain them because of this potential for shear forces to activate the clotting cascade. [Pg.110]


See other pages where Clotting extrinsic pathway is mentioned: [Pg.465]    [Pg.418]    [Pg.104]    [Pg.331]    [Pg.236]    [Pg.359]    [Pg.371]    [Pg.631]    [Pg.634]    [Pg.2]    [Pg.96]    [Pg.59]    [Pg.218]    [Pg.25]    [Pg.140]    [Pg.140]    [Pg.4]    [Pg.431]    [Pg.631]    [Pg.634]    [Pg.140]    [Pg.664]    [Pg.664]    [Pg.200]    [Pg.863]    [Pg.292]    [Pg.123]   
See also in sourсe #XX -- [ Pg.293 ]




SEARCH



Clots

Clotting

Extrinsic pathway

© 2024 chempedia.info