Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Claisen condensation, of acetyl CoA

As summarized in Figure 23.9, the mevalonate pathway begins with the Claisen condensation of acetyl CoA to yield acetoacetyl CoA. A second carbonyl condensation reaction with a third molecule of acetyl CoA, this one an aldol-like process, then yields the six-carbon compound 3-hydroxy-3-methylglutaryl CoA, which is reduced to give mevalonate. Phosphorylation, followed by loss of CO2 and phosphate ion, completes the process. [Pg.958]

Polycarboxylic acid synthases. Several enzymes, including citrate synthase, the key enzyme which catalyzes the first step of the citric acid cycle, promote condensations of acetyl-CoA with ketones (Eq. 13-38). An a-oxo acid is most often the second substrate, and a thioester intermediate (Eq. 13-38) undergoes hydrolysis to release coenzyme A.199 Because the substrate acetyl-CoA is a thioester, the reaction is often described as a Claisen condensation. The same enzyme that catalyzes the condensation of acetyl-CoA with a ketone also catalyzes the second step, the hydrolysis of the CoA thioester. These polycarboxylic acid synthases are important in biosynthesis. They carry out the initial steps in a general chain elongation process (Fig. 17-18). While one function of the thioester group in acetyl-CoA is to activate the methyl hydrogens toward the aldol condensation, the subsequent hydrolysis of the thioester linkage provides for overall irreversibility and "drives" the synthetic reaction. [Pg.700]

The rest of the biosynthesis does not need pyridoxal, but it does need two molecules of acetyl CoA. In Chapter 50 we noted that this thiol ester is a good electrophile and also enolizes easily. We need both reactivities now in a Claisen ester condensation of acetyl CoA. [Pg.1417]

Mevalonic acid itself is a product of acetate metabolism. Three molecules of acetate coenzyme A, produced by the citric acid cycle, are used to form mevalonic acid (Scheme 5.1). Two molecules undergo a Claisen condensation via acetyl-CoA-acetyltransferase enzyme [EC 2.3.1.9] to produce acetoacetyl-CoA, and a third is incorporated in a stereospecific aldol addition to the formation of p-hydroxy-p-methylglutaryl-CoA (HMG-CoA) by the aid of HMG-CoA synthase [EC 2.3.3.10]. The first Claisen reaction was found to involve formation of Cys-89 acetyl-5-enzyme reaction intermediate [9]. Then, Cys-378 residue on the active site of the enzyme activates a second molecule of acetyl-CoA to initiate the condensation reaction (Fig. 5.4) [11]. Similarly, in HMG-CoA synthases (S. aureus HMG-CoA synthase), Cysl 11/129 are the crucial residues of covalent attach to acetyl-CoA to produce acetyl-enzyme thioester with the subsequent loss of coenzyme A (Fig. 5.4). Glu79/95 residues are responsible for the enolization of acetyl-enzyme intermediate in order to react with acetoacetyl-CoA, which is bound to His233/264 residues [12]. [Pg.191]

The final step in the /3-oxidation cycle is the cleavage of the /3-ketoacyI-CoA. This reaction, catalyzed by thiolase (also known as j8-ketothiolase), involves the attack of a cysteine thiolate from the enzyme on the /3-carbonyI carbon, followed by cleavage to give the etiolate of acetyl-CoA and an enzyme-thioester intermediate (Figure 24.17). Subsequent attack by the thiol group of a second CoA and departure of the cysteine thiolate yields a new (shorter) acyl-CoA. If the reaction in Figure 24.17 is read in reverse, it is easy to see that it is a Claisen condensation—an attack of the etiolate anion of acetyl-CoA on a thioester. Despite the formation of a second thioester, this reaction has a very favorable A).q, and it drives the three previous reactions of /3-oxidation. [Pg.788]

Ketone body synthesis occurs only in the mitochondrial matrix. The reactions responsible for the formation of ketone bodies are shown in Figure 24.28. The first reaction—the condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA—is catalyzed by thiolase, which is also known as acetoacetyl-CoA thiolase or acetyl-CoA acetyltransferase. This is the same enzyme that carries out the thiolase reaction in /3-oxidation, but here it runs in reverse. The second reaction adds another molecule of acetyl-CoA to give (i-hydroxy-(i-methyl-glutaryl-CoA, commonly abbreviated HMG-CoA. These two mitochondrial matrix reactions are analogous to the first two steps in cholesterol biosynthesis, a cytosolic process, as we shall see in Chapter 25. HMG-CoA is converted to acetoacetate and acetyl-CoA by the action of HMG-CoA lyase in a mixed aldol-Claisen ester cleavage reaction. This reaction is mechanistically similar to the reverse of the citrate synthase reaction in the TCA cycle. A membrane-bound enzyme, /3-hydroxybutyrate dehydrogenase, then can reduce acetoacetate to /3-hydroxybutyrate. [Pg.798]

Step 1 of Figure 27.7 Claisen Condensation The first step in mevalonate biosynthesis is a Claisen condensation (Section 23.7) to yield acetoacetyl CoA, a reaction catalyzed by acetoacetyl-CoA acetyltransferase. An acetyl group is first bound to the enzyme by a nucleophilic acyl substitution reaction with a cysteine —SH group. Formation of an enolate ion from a second molecule of acetyl CoA, followed by Claisen condensation, then yields the product. [Pg.1072]

O Claisen condensation of two molecules of acetyl CoA gives acetoacetyl CoA. [Pg.1073]

Other Claisen condensations are involved in synthesis of fatty acids and polyketides217 (Chapter 21) and in formation of 3-hydroxy-3-methylglutaryl-CoA, the precursor to the polyprenyl family of compounds (Chapter 22). In these cases the acetyl group of acetyl-CoA is transferred by a simple displacement mechanism onto an -SH group at the active site of the synthase to form an acetyl-enzyme.218 219 The acetyl-enzyme is the actual reactant in step b of Eq. 17-5 where this reaction, as well as that of HMG-CoA lyase, is illustrated. [Pg.703]

The formation of the poly-P-keto chain could be envisaged as a series of Claisen reactions, the reverse of which are involved in the 3-oxidation sequence for the metabolism of fatty acids (see page 18). Thus, two molecules of acetyl-CoA could participate in a Claisen condensation giving acetoacetyl-CoA, and this reaction could be repeated to generate a poly-P-keto ester of appropriate chain length (Figure 3.1). However, a study of the enzymes involved in fatty acid biosynthesis showed this simple rationalization could not be correct, and a more complex series of... [Pg.35]

The conversion of acetyl-CoA into malonyl-CoA increases the acidity of the a-hydrogens, and thus provides a better nucleophile for the Claisen condensation. In the biosynthetic sequence, no acy-lated malonic acid derivatives are produced, and no label from [14C]bicarbonate is incorporated, so the carboxyl group introduced into malonyl-CoA is simultaneously lost by a decarboxylation reaction during the Claisen condensation (Figure 3.1). Accordingly, the carboxylation step helps to activate the a-carbon and facilitate Claisen condensation, and the carboxyl is immediately removed on completion of this task. An alternative rationalization is that decarboxylation of the malonyl ester is used to generate the acetyl enolate anion without any requirement for a strong base. [Pg.35]

Like the related fatty acid synthases (FASs), polyketide synthases (PKSs) are multifunctional enzymes that catalyze the decarboxylative (Claisen) condensation of simple carboxylic acids, activated as their coenzyme A (CoA) thioesters. While FASs typically use acetyl-CoA as the starter unit and malonyl-CoA as the extender unit, PKSs often employ acetyl- or propionyl-CoA to initiate biosynthesis, and malonyl-, methylmalonyl-, and occasionally ethylmalonyl-CoA or pro-pylmalonyl-CoA as a source of chain-extension units. After each condensation, FASs catalyze the full reduction of the P-ketothioester to a methylene by way of ketoreduction, dehydration, and enoyl reduction (Fig. 3). In contrast, PKSs shortcut the FAS pathway in one of two ways (Fig. 4). The aromatic PKSs (Fig. 4a) leave the P-keto groups substantially intact to produce aromatic products, while the modular PKSs (Fig. 4b) catalyze a variable extent of reduction to yield the so-called complex polyketides. In the latter case, reduction may not occur, or there may be formation of a P-hydroxy, double-bond, or fully saturated methylene additionally, the outcome may vary between different cycles of chain extension (Fig. 4b). This inherent variability in keto reduction, the greater variety of... [Pg.431]

The first step is the Claisen ester condensation of two molecules of acetyl CoA, one acting as an enol and the other as an electrophilic acylating agent to give acetoacetyl CoA. We saw the same reaction in the biosynthesis of the pyrrolidine alkaloids earlier in this chapter. [Pg.1437]

The third molecule of acetyl CoA also functions as a nucleophilic enol and attacks the keto group of acetoacetyl CoA. This is not a Claisen ester condensation—it is an aldol reaction between the enol of a thiol ester and an electrophilic ketone. [Pg.1437]

The first reaction (1), catalyzed by thiolase, involves a Claisen condensation of two acetyl CoA s (essentially a reversal of the last reaction of beta-oxidation) to give acetoacetyl CoA - almost the final product The problem now is to remove the CoASH. [Pg.353]

The second metabolic pathway which we have chosen to describe is the tricarboxylic acid cycle, often referred to as the Krebs cycle. This represents the biochemical hub of intermediary metabolism, not only in the oxidative catabolism of carbohydrates, lipids, and amino acids in aerobic eukaryotes and prokaryotes, but also as a source of numerous biosynthetic precursors. Pyruvate, formed in the cytosol by glycolysis, is transported into the matrix of the mitochondria where it is converted to acetyl CoA by the multi-enzyme complex, pyruvate dehydrogenase. Acetyl CoA is also produced by the mitochondrial S-oxidation of fatty acids and by the oxidative metabolism of a number of amino acids. The first reaction of the cycle (Figure 5.12) involves the condensation of acetyl Co and oxaloacetate to form citrate (1), a Claisen ester condensation. Citrate is then converted to the more easily oxidised secondary alcohol, isocitrate (2), by the iron-sulfur centre of the enzyme aconitase (described in Chapter 13). This reaction involves successive dehydration of citrate, producing enzyme-bound cis-aconitate, followed by rehydration, to give isocitrate. In this reaction, the enzyme distinguishes between the two external carboxyl groups... [Pg.102]

Quite a few of the enzymes involved in the biosynthesis of HMG-CoA have been studied in C. roseus. Acetoacetyl-CoA thiolase (AACT, acetyl-CoA acetyl-CoA C-transferase, EC 2.1.3.9) catalyzing the first step, the Claisen-type condensation of two molecules of acetyl-CoA, was partially purified from a cell suspension culture of C. roseus (78). The enzyme consists... [Pg.230]


See other pages where Claisen condensation, of acetyl CoA is mentioned: [Pg.670]    [Pg.199]    [Pg.807]    [Pg.670]    [Pg.199]    [Pg.807]    [Pg.700]    [Pg.282]    [Pg.392]    [Pg.833]    [Pg.92]    [Pg.595]    [Pg.608]    [Pg.699]    [Pg.950]    [Pg.17]    [Pg.1073]    [Pg.238]    [Pg.699]    [Pg.608]    [Pg.241]    [Pg.37]    [Pg.16]   
See also in sourсe #XX -- [ Pg.1417 ]

See also in sourсe #XX -- [ Pg.1417 ]




SEARCH



Acetyl-CoA

Acetyl-CoA acetylation

Acetyl-CoA condensation

Claisen condensation

© 2024 chempedia.info