Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymes Acetyltransferase

The neurotransmitter must be present in presynaptic nerve terminals and the precursors and enzymes necessary for its synthesis must be present in the neuron. For example, ACh is stored in vesicles specifically in cholinergic nerve terminals. It is synthesized from choline and acetyl-coenzyme A (acetyl-CoA) by the enzyme, choline acetyltransferase. Choline is taken up by a high affinity transporter specific to cholinergic nerve terminals. Choline uptake appears to be the rate-limiting step in ACh synthesis, and is regulated to keep pace with demands for the neurotransmitter. Dopamine [51 -61-6] (2) is synthesized from tyrosine by tyrosine hydroxylase, which converts tyrosine to L-dopa (3,4-dihydroxy-L-phenylalanine) (3), and dopa decarboxylase, which converts L-dopa to dopamine. [Pg.517]

Acetylcholine. Acetylcholiae (ACh) (1) is a crystalliae material that is very soluble ia water and alcohol. ACh, synthesized by the enzyme choline acetyltransferase (3), iateracts with two main classes of receptor ia mammals muscarinic (mAChR), defiaed oa the basis of the agonist activity of the alkaloid muscarine (4), and nicotinic (nAChR), based on the agonist activity of nicotine (5) (Table 1). m AChRs are GPCRs (21) n AChRs are LGICs (22). [Pg.518]

Ketone body synthesis occurs only in the mitochondrial matrix. The reactions responsible for the formation of ketone bodies are shown in Figure 24.28. The first reaction—the condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA—is catalyzed by thiolase, which is also known as acetoacetyl-CoA thiolase or acetyl-CoA acetyltransferase. This is the same enzyme that carries out the thiolase reaction in /3-oxidation, but here it runs in reverse. The second reaction adds another molecule of acetyl-CoA to give (i-hydroxy-(i-methyl-glutaryl-CoA, commonly abbreviated HMG-CoA. These two mitochondrial matrix reactions are analogous to the first two steps in cholesterol biosynthesis, a cytosolic process, as we shall see in Chapter 25. HMG-CoA is converted to acetoacetate and acetyl-CoA by the action of HMG-CoA lyase in a mixed aldol-Claisen ester cleavage reaction. This reaction is mechanistically similar to the reverse of the citrate synthase reaction in the TCA cycle. A membrane-bound enzyme, /3-hydroxybutyrate dehydrogenase, then can reduce acetoacetate to /3-hydroxybutyrate. [Pg.798]

Step 1 of Figure 27.7 Claisen Condensation The first step in mevalonate biosynthesis is a Claisen condensation (Section 23.7) to yield acetoacetyl CoA, a reaction catalyzed by acetoacetyl-CoA acetyltransferase. An acetyl group is first bound to the enzyme by a nucleophilic acyl substitution reaction with a cysteine —SH group. Formation of an enolate ion from a second molecule of acetyl CoA, followed by Claisen condensation, then yields the product. [Pg.1072]

Acetyltransferase is an enzyme that catalyses the transfer of an acetyl group from one substance to another. [Pg.12]

The major mechanism of resistance to chloramphenicol is mediated by the chloramphenicol acetyltransferases (CAT enzymes) which transfer one or two acetyl groups to one molecule of chloramphenicol. While the CAT enzymes share a common mechanism, different molecular classes can be discriminated. The corresponding genes are frequently located on integron-like structures and are widely distributed among Gramnegative and - positive bacteria. [Pg.104]

Enzymes transferring an acetyl moiety to one specific of several amino-groups of the aminocyclitol-aminoglycoside antibiotics (e.g. gentamicin, amikacin, kanamycin) are called aminoglycoside acetyltransferases... [Pg.104]

The metabolism of foreign compounds (xenobiotics) often takes place in two consecutive reactions, classically referred to as phases one and two. Phase I is a functionalization of the lipophilic compound that can be used to attach a conjugate in Phase II. The conjugated product is usually sufficiently water-soluble to be excretable into the urine. The most important biotransformations of Phase I are aromatic and aliphatic hydroxylations catalyzed by cytochromes P450. Other Phase I enzymes are for example epoxide hydrolases or carboxylesterases. Typical Phase II enzymes are UDP-glucuronosyltrans-ferases, sulfotransferases, N-acetyltransferases and methyltransferases e.g. thiopurin S-methyltransferase. [Pg.450]

Figure 3. Mitochondrial fatty acid oxidation. Long-chain fatty acids are converted to their CoA-esters as described in the text, and their fatty-acyl-groups transferred to CoA in the matrix by the concerted action of CPT 1, the acylcarnitine/carnitine exchange carrier and CPT (A) as described in the text. Medium-chain and short-chain fatty acids (Cg or less) diffuse directly into the matrix where they are converted to their acyl-CoA esters by a acyl-CoA synthase. The mechanism of p-oxidation is shown below (B). Each cycle of P-oxidation removes -CH2-CH2- as an acetyl unit until the fatty acids are completely converted to acetyl-CoA. The enzymes catalyzing each stage of P-oxidation have different but overlapping specificities. In muscle mitochondria, most acetyl-CoA is oxidized to CO2 and H2O by the citrate cycle (Figure 4) some is converted to acylcamitine by carnitine acetyltransferase (associated with the inner face of the inner membrane) and exported from the matrix. Some acetyl-CoA (if in excess) is hydrolyzed to acetate and CoASH by acetyl-CoA hydrolase in the matrix. Enzymes ... Figure 3. Mitochondrial fatty acid oxidation. Long-chain fatty acids are converted to their CoA-esters as described in the text, and their fatty-acyl-groups transferred to CoA in the matrix by the concerted action of CPT 1, the acylcarnitine/carnitine exchange carrier and CPT (A) as described in the text. Medium-chain and short-chain fatty acids (Cg or less) diffuse directly into the matrix where they are converted to their acyl-CoA esters by a acyl-CoA synthase. The mechanism of p-oxidation is shown below (B). Each cycle of P-oxidation removes -CH2-CH2- as an acetyl unit until the fatty acids are completely converted to acetyl-CoA. The enzymes catalyzing each stage of P-oxidation have different but overlapping specificities. In muscle mitochondria, most acetyl-CoA is oxidized to CO2 and H2O by the citrate cycle (Figure 4) some is converted to acylcamitine by carnitine acetyltransferase (associated with the inner face of the inner membrane) and exported from the matrix. Some acetyl-CoA (if in excess) is hydrolyzed to acetate and CoASH by acetyl-CoA hydrolase in the matrix. Enzymes ...
If a substance is to be a NT it should be possible to demonstrate appropriate enzymes for its synthesis from a precursor at its site of action, although peptides are transported to their sites of location and action after synthesis in the axon or distal neuronal cell body. The specificity of any enzyme system must also be established, especially if they are to be modified to manipulate the levels of a particular NT, or used as markers for it. Thus choline acetyltransferase (ChAT) may be taken as indicative of ACh and glutamic acid decarboxylase (GAD) of GABA but some of the synthesising enzymes for the monoamines lack such specificity. [Pg.27]

Figure 6.1 Synthesis and metabolism of acetylcholine. Choline is acetylated by reacting with acetyl-CoA in the presence of choline acetyltransferase to form acetylcholine (1). The acetylcholine binds to the anionic site of cholinesterase and reacts with the hydroxy group of serine on the esteratic site of the enzyme (2). The cholinesterase thus becomes acetylated and choline splits off to be taken back into the nerve terminal for further ACh synthesis (3). The acetylated enzyme is then rapidly hydrolised back to its active state with the formation of acetic acid (4)... Figure 6.1 Synthesis and metabolism of acetylcholine. Choline is acetylated by reacting with acetyl-CoA in the presence of choline acetyltransferase to form acetylcholine (1). The acetylcholine binds to the anionic site of cholinesterase and reacts with the hydroxy group of serine on the esteratic site of the enzyme (2). The cholinesterase thus becomes acetylated and choline splits off to be taken back into the nerve terminal for further ACh synthesis (3). The acetylated enzyme is then rapidly hydrolised back to its active state with the formation of acetic acid (4)...
The reaction of choline with mitochondrial bound acetylcoenzyme A is catalysed by the cytoplasmic enzyme choline acetyltransferase (ChAT) (see Fig. 6.1). ChAT itelf is synthesised in the rough endoplasmic reticulum of the cell body and transported to the axon terminal. Although the precise location of the synthesis of ACh is uncertain most of that formed is stored in vesicles. It appears that while ChAT is not saturated with either acetyl-CoA or choline its synthesising activity is limited by the actual availability of choline, i.e. its uptake into the nerve terminal. No inhibitors of ChAT itself have been developed but the rate of synthesis of ACh can, however, be inhibited by drugs like hemicholinium or triethylcholine, which compete for choline uptake into the nerve. [Pg.120]

Acetylcholine is formed from acetyl CoA (produced as a byproduct of the citric acid and glycolytic pathways) and choline (component of membrane lipids) by the enzyme choline acetyltransferase (ChAT). Following release it is degraded in the extracellular space by the enzyme acetylcholinesterase (AChE) to acetate and choline. The formation of acetylcholine is limited by the intracellular concentration of choline, which is determined by the (re)uptake of choline into the nerve ending (Taylor Brown, 1994). [Pg.26]

Acetylcholine synthesis and neurotransmission requires normal functioning of two active transport mechanisms. Choline acetyltransferase (ChAT) is the enzyme responsible for ACh synthesis from the precursor molecules acetyl coenzyme A and choline. ChAT is the neurochemical phenotype used to define cholinergic neurons although ChAT is present in cell bodies, it is concentrated in cholinergic terminals. The ability of ChAT to produce ACh is critically dependent on an adequate level of choline. Cholinergic neurons possess a high-affinity choline uptake mechanism referred to as the choline transporter (ChT in Fig. 5.1). The choline transporter can be blocked by the molecule hemicholinium-3. Blockade of the choline transporter by hemicholinium-3 decreases ACh release,... [Pg.129]

Production of acetate ester pheromone components utilizes an enzyme called acetyl-CoA fatty alcohol acetyltransferase that converts a fatty alcohol to an acetate ester. Therefore, alcohols could be utilized as substrates for both aldehyde and acetate ester formation. In some tortricids an in vitro enzyme assay was utilized to demonstrate specificity of the acetyltransferase for the Z isomer of ll-14 OH [66]. This specificity contributes to the final ratio of... [Pg.110]

The above three examples illustrate how a species-specific pheromone blend is produced by the concerted action of desaturases, chain shortening enzymes, a reductase, and an acetyltransferase. The specificity inherent in certain enzymes in the pathway produces the final blend of pheromone components. [Pg.112]


See other pages where Enzymes Acetyltransferase is mentioned: [Pg.182]    [Pg.216]    [Pg.182]    [Pg.216]    [Pg.222]    [Pg.481]    [Pg.512]    [Pg.771]    [Pg.896]    [Pg.948]    [Pg.1026]    [Pg.1120]    [Pg.1228]    [Pg.472]    [Pg.104]    [Pg.112]    [Pg.188]    [Pg.191]    [Pg.448]    [Pg.481]    [Pg.486]    [Pg.296]    [Pg.380]    [Pg.479]    [Pg.110]    [Pg.110]    [Pg.284]    [Pg.278]    [Pg.20]    [Pg.104]    [Pg.122]    [Pg.283]    [Pg.355]    [Pg.127]    [Pg.543]    [Pg.784]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Acetyltransferase

Chloramphenicol acetyltransferase inactivating enzymes

Enzyme inhibitors choline acetyltransferase

Enzymes choline acetyltransferase

© 2024 chempedia.info