Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium oxidants alcohols

Cupric oxide-zinc carbonate-chromium oxide Alcohols from carboxylic acid esters Continuous process s. 18, 103... [Pg.422]

By passing the alcohol vapour over a copper - chromium oxide catalyst deposit on pumice and heated to 330°, for example ... [Pg.318]

Trimethylene dibromide (Section 111,35) is easily prepared from commercial trimethj lene glycol, whilst hexamethylene dibromide (1 O dibromohexane) is obtained by the red P - Br reaction upon the glycol 1 6-hexanediol is prepared by the reduction of diethyl adipate (sodium and alcohol lithium aluminium hydride or copper-chromium oxide and hydrogen under pressure). Penta-methylene dibromide (1 5-dibromopentane) is readily produced by the red P-Brj method from the commercially available 1 5 pentanediol or tetra-hydropyran (Section 111,37). Pentamethylene dibromide is also formed by the action of phosphorus pentabromide upon benzoyl piperidine (I) (from benzoyl chloride and piperidine) ... [Pg.489]

Hydrogenations with coppcr-chromium oxide catalyst are usually carried out in the liquid phase in stainless steel autoclaves at pressures up to 5000-6000 lb. per square inch. A solvent is not usually necessary for hydrogenation of an ester at 250° since the original ester and the alcohol or glycol produced serve as the reaction medium. However, when dealing with small quantities and also at temperatures below 200° a solvent is desirable this may be methyl alcohol, ethyi alcohol, dioxan or methylcyc/ohexane. [Pg.872]

Vigorous oxidation leads to the formation of a carboxylic acid but a number of meth ods permit us to stop the oxidation at the intermediate aldehyde stage The reagents most commonly used for oxidizing alcohols are based on high oxidation state transition met als particularly chromium(VI)... [Pg.641]

C and 19,600 kPa (2800 psi). The catalyst is a complex aluminum—ca dmium —chromium oxide that has high activity and exceptionally long life. The process is claimed to give a conversion of ester to alcohol of about 99% retaining essentially all of the original double bonds. [Pg.449]

Table IV presents the results of the determination of polyethylene radioactivity after the decomposition of the active bonds in one-component catalysts by methanol, labeled in different positions. In the case of TiCU (169) and the catalyst Cr -CjHsU/SiCU (8, 140) in the initial state the insertion of tritium of the alcohol hydroxyl group into the polymer corresponds to the expected polarization of the metal-carbon bond determined by the difference in electronegativity of these elements. The decomposition of active bonds in this case seems to follow the scheme (25) (see Section V). But in the case of the chromium oxide catalyst and the catalyst obtained by hydrogen reduction of the supported chromium ir-allyl complexes (ir-allyl ligands being removed from the active center) (140) C14 of the... Table IV presents the results of the determination of polyethylene radioactivity after the decomposition of the active bonds in one-component catalysts by methanol, labeled in different positions. In the case of TiCU (169) and the catalyst Cr -CjHsU/SiCU (8, 140) in the initial state the insertion of tritium of the alcohol hydroxyl group into the polymer corresponds to the expected polarization of the metal-carbon bond determined by the difference in electronegativity of these elements. The decomposition of active bonds in this case seems to follow the scheme (25) (see Section V). But in the case of the chromium oxide catalyst and the catalyst obtained by hydrogen reduction of the supported chromium ir-allyl complexes (ir-allyl ligands being removed from the active center) (140) C14 of the...
Hydrogenation of Fatty Acid Methyl Esters The hydrogenolysis of fatty acid methyl esters into the corresponding fatty alcohols and methanol is performed at 200-300°C and a H2 pressure of 200-300 bar with the aid of copper oxide/chromium oxide catalysts (Adkins catalysts). Three different procedures are applied [39 a-c] ... [Pg.20]

Sodium perborate oxidation of alcohols by is aided by Aliquat, but also requires the addition of chromium oxide [17]. However, the long reaction times at 60-80°C and the variable yields do not make the procedure particularly attractive. In contrast, direct epoxidation of a,p-unsaturatcd ketones has been conducted with moderate success using sodium perborate catalysed by tetra-n-hexylammonium hydrogen sulphate [18, 19]. [Pg.448]

With the same excess of catalysts hydrogenations of the esters over Raney nickel could be carried out at temperatures as low as 25-125° at 350atm with comparable results (80% yields). However, benzene rings were saturated under these conditions [55]. In addition to nickel and copper, zinc and chromium oxides, rhenium obtained by reduction of rhenium heptoxide also catalyzes hydrogenation of esters to alcohols at 150-250° and 167-340 atm in 35-100% yields [42]. [Pg.154]

The oxidation of alcohols to the corresponding aldehydes, ketones or acids certainly represents one of the more important functional group transformations in organic synthesis and there are numerous methods reported in the literature (1-3). However, relatively few methods describe the selective oxidation of primary or secondary alcohols to the corresponding aldehydes and ketones and most of them traditionally use a stoichiometric terminal oxidant such as chromium oxide (4), dichromate (5), manganese oxide (6), and osmium or ruthenium oxides as primary oxidants (7). [Pg.119]

Naturally occurring fatty alcohols used in the fragrance industry are produced principally by reduction of the methyl esters of the corresponding carboxylic acids, which are obtained by transesterification of natural fats and oils with methanol. Industrial reduction processes include catalytic hydrogenation in the presence of copper-chromium oxide catalysts (Adkins catalysts) and reduction with sodium (Bouveault—Blanc reduction). Unsaturated alcohols can also be prepared by the latter method. Numerous alcohols used in flavor compositions are, meantime, produced by biotechnological processes [11]. Alcohols are starting materials for aldehydes and esters. [Pg.9]

Chromium-based oxidants, noteworthy for their specificity and ease of use, continue to be popular. Enayatollah Mottaghinejad of Azad University of Iran, Tehran has found (Tetrahedron Lett. 2004,45, 8823) that barium dichromate, easily prepared, smoothly oxidizes alcohols to aldehydes and ketones in refluxing acetonitrile. [Pg.93]

Supported copper catalysts are widely used in industrial chemical processes far the hydrogenation of different compounds. Of great importance are the synthesis of methanol in the presence of CuO/ZnO/Al203 catalyst and hydrogenation of fat oxo-aldehydes to alcohols with mixed copper-chromium oxides. [Pg.161]

Such reactions comprise practically all those in which hydrogen is linked to carbon to produce of necessity hydroxy compounds, which are of industrial importance, e.g., the manufacture of methanol and higher alcohols from carbon monoxide and hydrogen in presence of catalysts, such as zinc-chromium oxides. [Pg.184]

Carbon monoxide and hydrogen, heated under pressure in the presence of a suitable catalyst, combine to form methyl alcohol. A mixture of zinc oxide and chromium oxide has been used as a... [Pg.276]

Other chromium-based reagents are also found to oxidize alcohols, following a mechanism like the one depicted above for oxidation with chromic acid.4... [Pg.2]

In 1946, Jones discovered that secondary alcohols could be efficiently oxidized to ketones by pouring a solution of chromium trioxide in diluted sulfuric acid over a solution of the alcohol in acetone.13 This procedure, which has proved to be quite safe, allows a sufficient contact of the alcohol with chromium oxide derivatives for a reaction to take place. Jones oxidation marked the beginning of the highly successful saga of chromium-based oxidants. [Pg.5]


See other pages where Chromium oxidants alcohols is mentioned: [Pg.93]    [Pg.164]    [Pg.218]    [Pg.203]    [Pg.212]    [Pg.20]    [Pg.314]    [Pg.192]    [Pg.150]    [Pg.156]    [Pg.26]    [Pg.242]    [Pg.152]    [Pg.98]    [Pg.299]    [Pg.41]    [Pg.202]    [Pg.172]    [Pg.299]    [Pg.232]    [Pg.168]    [Pg.249]    [Pg.334]    [Pg.91]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



ALDEHYDES FROM PRIMARY ALCOHOLS BY OXIDATION WITH CHROMIUM TRIOXIDE

ALDEHYDES FROM PRIMARY ALCOHOLS BY OXIDATION WITH CHROMIUM TRIOXIDE: 1-HEPTANAL

Alcohol oxidation with chromium

Alcohol oxidation with chromium Collins reagent

Alcohol oxidation with chromium Jones reagent

Alcohol oxidation with chromium pyridinium chlorochromate

Alcohol oxidation with chromium pyridinium dichromate

Alcohols oxidation with chromium derivatives

Alcohols, carbonylation chromium oxidation

Chromium alcohols

Chromium catalysts alcohol oxidation

Chromium dioxide, oxidation alcohols

Chromium oxidants

Chromium oxidation alcohols

Chromium oxide

Chromium oxids

Chromium reagents alcohol oxidation

Chromium substituted alcohol oxidations

Chromium trioxide alcohol oxidation

Oxides chromium oxide

© 2024 chempedia.info