Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorinated starch

Preparation of a chlorostarch for improved pigment retention in paper has been reported.2278 Acetalation of chlorinated starches was described573 as a procedure for producing a high-strength paper size. [Pg.270]

A second modification to reduce viscosity is to treat the starch with chlorine under alkaline conditions. Lightly chlorinated starches use the water fluidity method of viscosity designation, but more heavily chlorinated products use a borax fluidity procedure. Chlorinated starches are generally called oxidized starches. They are anionic, in that they contain negative charges. This can be verified by staining with cationic dyes. Methylene Blue is a typical cationic dye. [Pg.156]

Transfer 25 ml. of this dilute solution by means of a pipette to a conical flask, and add similarly 50 ml. of Ml 10 iodine solution. Now-add 10% sodium hydroxide solution until the liquid becomes pale yeilow in colour, and allow the solution to stand, with occasional shaking, at room temperature for at least 10 minutes. Then acidify with dilute hydrochloric acid (free from chlorine) in order to liberate the remaining iodine. Titrate the latter w ith Mho sodium thiosulphate solution, using starch as an indicator in the usual way. [Pg.458]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

Starch oxidation was investigated as early as 1829 by Liebig. The objective, as with other modifications, was to obtain a modified granular starch. The oxidant commonly employed is sodium hypochlorite, prepared from chlorine and aqueous sodium hydroxide. This reaction is exothermic and external cooling must be provided during preparation of the oxidant. [Pg.344]

The reactive intermediate, (C2H3)2NCH2CH2C1 HCl, which is used to produce cationic starch, is made by the reaction of (C2H3)2NCH2CH20H with thionyl chloride. A synthetic sweetener (qv), sucralose [56038-13-2] is made by the reaction of sucrose or an acetate thereof with thionyl chloride to replace three hydroxy groups by chlorines (187,188). [Pg.141]

A good technical grade of carbon tetrachloride contains not more than the following amounts of impurities 1 ppm acidity as HCl, 1 ppm carbon disulfide if manufactured by carbon disulfide chlorination, 20 ppm bromine, 200 ppm water, and 150 ppm chloroform. The residue should not exceed 10 ppm on total evaporation. The product should give no acid reaction with bromophenol blue, and the starch iodine test should indicate the absence of free chlorine. [Pg.532]

When the chlorination is complete, the reaction mixture is poured into 1,000 parts of water and treated with a dilute sodium bisulfite solution, until no more reaction may be observed with starch-potassium iodide paper. Thereby the 5,7-dichloro-8-hydroxy-quinaidine separates out in form of a weakly yellowish colored precipitate. The same is filtered off and thoroughly washed with water. [Pg.327]

The s-triazines undergo chlorination at nitrogen to yield reactive N-chloro derivatives which oxidize iodide to iodine in the second step. This then forms an intense blue iodine-starch inclusion complex with starch. [Pg.42]

Note The reagent sequence is a modification of the chlorine —potassium iodide-starch reagent. [Pg.42]

Primary and secondary amines and amides are first chlorinated at nitrogen by the chlorine released by the gradually decomposing calcium hypochlorite. Excess chlorine gas is then selectively reduced in the TLC layer by gaseous formaldehyde. The reactive chloramines produced in the chromatogram zones then oxidize iodide to iodine, which reacts with the starch to yield an intense blue iodine-starch inclusion complex. [Pg.45]

Note This reagent sequence is a modiflcation of the reagent chlorine — potassium iodide — starch . Mobile phases containing ammonia must be removed completely before treatment with the reagent sequence, since otherwise the background will be colored too. Some secondary amines (e.g. diphenylamine) and some amides (e.g. 2,4-dinitrobenzamide) and methionine sulfoxide do not give reactions even in quantities of up to 1 to 2 (ig. [Pg.45]

Treatment with chlorine gas converts amines to chloramines, whose active chlorine oxidizes iodide to iodine. This then forms the well-known, deep blue iodine-starch complex [13]. [Pg.105]

Substances containing active chlorine or bromine oxidize iodide ions — if necessary under the influence of UV light - to iodine, which reacts with starch to yield the well-known intense blue starch-iodine inclusion complex. [Pg.194]


See other pages where Chlorinated starch is mentioned: [Pg.69]    [Pg.136]    [Pg.109]    [Pg.126]    [Pg.109]    [Pg.232]    [Pg.598]    [Pg.168]    [Pg.751]    [Pg.263]    [Pg.1389]    [Pg.69]    [Pg.136]    [Pg.109]    [Pg.126]    [Pg.109]    [Pg.232]    [Pg.598]    [Pg.168]    [Pg.751]    [Pg.263]    [Pg.1389]    [Pg.164]    [Pg.340]    [Pg.445]    [Pg.1]    [Pg.342]    [Pg.790]    [Pg.105]    [Pg.105]    [Pg.106]    [Pg.106]    [Pg.107]    [Pg.346]    [Pg.347]    [Pg.348]    [Pg.742]    [Pg.840]    [Pg.840]    [Pg.841]    [Pg.265]   
See also in sourсe #XX -- [ Pg.177 , Pg.183 ]




SEARCH



© 2024 chempedia.info