Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride encapsulation

Figure 4a represents interfacial polymerisation encapsulation processes in which shell formation occurs at the core material—continuous phase interface due to reactants in each phase diffusing and rapidly reacting there to produce a capsule shell (10,11). The continuous phase normally contains a dispersing agent in order to faciUtate formation of the dispersion. The dispersed core phase encapsulated can be water, or a water-immiscible solvent. The reactant(s) and coreactant(s) in such processes generally are various multihmctional acid chlorides, isocyanates, amines, and alcohols. For water-immiscible core materials, a multihmctional acid chloride, isocyanate or a combination of these reactants, is dissolved in the core and a multihmctional amine(s) or alcohol(s) is dissolved in the aqueous phase used to disperse the core material. For water or water-miscible core materials, the multihmctional amine(s) or alcohol(s) is dissolved in the core and a multihmctional acid chloride(s) or isocyanate(s) is dissolved in the continuous phase. Both cases have been used to produce capsules. [Pg.320]

Figure 5 illustrates the type of encapsulation process shown in Figure 4a when the core material is a water-immiscible Hquid. Reactant X, a multihmctional acid chloride, isocyanate, or combination of these reactants, is dissolved in the core material. The resulting mixture is emulsified in an aqueous phase that contains an emulsifier such as partially hydroly2ed poly(vinyl alcohol) or a lignosulfonate. Reactant Y, a multihmctional amine or combination of amines such as ethylenediamine, hexamethylenediamine, or triethylenetetramine, is added to the aqueous phase thereby initiating interfacial polymerisation and formation of a capsule shell. If reactant X is an acid chloride, base is added to the aqueous phase in order to act as an acid scavenger. [Pg.320]

Solvent Evaporation. This encapsulation technology involves removing a volatile solvent from either an oil-in-water, oil-in-oil, or water-in-oH-in-water emulsion (19,20). In most cases, the shell material is dissolved in a volatile solvent such as methylene chloride or ethyl acetate. The active agent to be encapsulated is either dissolved, dispersed, or emulsified into this solution. Water-soluble core materials like hormonal polypeptides are dissolved in water that contains a thickening agent before dispersion in the volatile solvent phase that contains the shell material. This dispersed aqueous phase is gelled thermally to entrap the polypeptide in the dispersed aqueous phase before solvent evaporation occurs (21). [Pg.321]

For example, chloride and duoride ions, even in trace amounts (ppm), could cause the dissolution of aluminum metallization of complimentary metal oxide semiconductor (CMOS) devices. CMOS is likely to be the trend of VLSI technology and sodium chloride is a common contaminant. The protection of these devices from the effects of these mobile ions is an absolute requirement. The use of an ultrahigh purity encapsulant to encapsulate the passivated IC is the answer to some mobile ion contaminant problems. [Pg.188]

The abiHty of a given material to perform as an electronic embedding encapsulant depends largely on its properties. Ultrapure chemical properties with a low level of mobile ions such as sodium, potassium, and chloride are essential. Furthermore, the material s electrical, mechanical, and rheological properties are critical. [Pg.191]

Advantages Major advantages of an encapsulation process involve the fact that waste materials never come into contact with water, therefore, soluble materials (such as sodium chloride) can be successfully surface-encapsulated. The impervious jacket also eliminates all leaching into contacting waters as long as the jacket remains intact. [Pg.184]

In these systems, particularly systems such as potassium chloride polymer, the role of bentonite is diminished because the chemical environment is designed to collapse and encapsulate the clays since this reaction is required to stabilize water-sensitive formations. The clay may have a role in the initial formulation of an inhibited fluid to provide the solids to create a filter cake. [Pg.674]

Organic solvents are most commonly used, and encapsulating polymers include ethylcellu-lose, NC, polvvinylidene chloride, polystyrene, polycarbonate, polymethylmethacrylate, polyvinyl acetate and others. Inter facial polymerization produces a polymer such as nylon at the interface between layered solns of two precursor materials such as (in the case of a nylon) a diamine and a diacid (Refs 3 11). If the particle or drop-... [Pg.142]

The resolution of racemic ethyl 2-chloropropionate with aliphatic and aromatic amines using Candida cylindracea lipase (CCL) [28] was one of the first examples that showed the possibilities of this kind of processes for the resolution of racemic esters or the preparation of chiral amides in benign conditions. Normally, in these enzymatic aminolysis reactions the enzyme is selective toward the (S)-isomer of the ester. Recently, the resolution ofthis ester has been carried out through a dynamic kinetic resolution (DKR) via aminolysis catalyzed by encapsulated CCL in the presence of triphenylphosphonium chloride immobilized on Merrifield resin (Scheme 7.13). This process has allowed the preparation of (S)-amides with high isolated yields and good enantiomeric excesses [29]. [Pg.179]

Another type of stereoisomerism, called out-in isomerism, is found in salts of tricyclic diamines with nitrogen at the bridgeheads. In cases where k, , and m >6, the N—H bonds can be inside the molecular cavity or outside, giving rise to three isomers, as shown. Simmons and Park ° isolated several such isomers with k, I, and m varying from 6 to 10. In the 9,9,9 compound, the cavity of the in-in isomer is large enough to encapsulate a chloride ion that is hydrogen bonded to the two N—H... [Pg.163]

Meat products have to be stabilised in some cases, as meat lipids contain no natural antioxidants or only traces of tocopherols. Most muscle foods contain, however, an efficient multi-component antioxidant defence system based on enzymes, but the balance changes adversely on storage. The denaturation of muscle proteins is the main cause of the inbalance as iron may be released from its complexes, catalysing the lipid oxidation. Salting contributes to the negative effects of storage, as it enhances oxidation. Using encapsulated salt eliminates the deleterious effect of sodium chloride. [Pg.308]

FIG. 15 Potential response of anion ISFETs based on sol-gel-derived membranes encapsulating trioctylmethylammonium chloride ( ) and modified chemically by alkoxysilylated quaternary ammonium salt (12) (O) to CC-activity changes. (From Ref 50.)... [Pg.603]

The electrolyte was a solution of ammonium chloride that bathed the electrodes. Like Plante s electrochemistry of the lead-acid battery, Leclanche s electrochemistry survives until now in the form of zinc-carbon dry cells and the use of gelled electrolyte.12 In their original wet form, the Leclanche electrochemistry was neither portable nor practicable to the extent that several modifications were needed to make it practicable. This was achieved by an innovation made by J. A. Thiebaut in 1881, who through encapsulating both zinc cathode and electrolyte in a sealed cup avoided the leakage of the liquid electrolyte. Modern plastics, however, have made Leclanche s chemistry not only usable but also invaluable in some applications. For example, Polaroid s Polar Pulse disposable batteries used in instant film packs use Leclanche chemistry, albeit in a plastic sandwich instead of soup bowls.1... [Pg.1305]

The encapsulation process used was the LbL method, employing alternately charged polymers, namely PDA [poly(diallyldimethylammonium chloride)] and PSS... [Pg.141]

In Table 3, the membranes of capsules 2,7,8, and 10 are quite dense and have low permeability. In Table 4, capsule entries 2 and 4 are again relatively impermeable and are probably unsuitable for xenogeneic cell encapsulation. By comparison the alginate/cellulose sulfate//polydimethylene-co-guanidine/calcium chloride capsules seem to offer the most suitable MWCO (approximately 100 kD). This type of capsule is photographed in Fig. 2, with... [Pg.66]


See other pages where Chloride encapsulation is mentioned: [Pg.210]    [Pg.172]    [Pg.172]    [Pg.115]    [Pg.218]    [Pg.210]    [Pg.172]    [Pg.172]    [Pg.115]    [Pg.218]    [Pg.324]    [Pg.325]    [Pg.325]    [Pg.287]    [Pg.186]    [Pg.156]    [Pg.109]    [Pg.189]    [Pg.632]    [Pg.124]    [Pg.648]    [Pg.602]    [Pg.114]    [Pg.111]    [Pg.126]    [Pg.58]    [Pg.121]    [Pg.603]    [Pg.604]    [Pg.1214]    [Pg.162]    [Pg.217]    [Pg.66]    [Pg.145]    [Pg.146]    [Pg.150]    [Pg.36]    [Pg.52]    [Pg.63]    [Pg.68]   
See also in sourсe #XX -- [ Pg.173 ]




SEARCH



© 2024 chempedia.info