Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride alkoxide synthesis

Lanthanides in homogeneous systems As organometallics As cerium(IV) salts As coordination complexes As nitrates, chlorides, alkoxides etc. For olefin polymerization For olefin hydrogenation For free radical polymerization For Diels-Alder reactions For olefin polymerization In organic synthesis... [Pg.904]

The amide method was found to be convenient and straightforward in many cases. An example is the synthesis of soluble barium terr-butoxide, which has a cubane structure (106b). The preparation of this compound by other routes (e.g, direct action of metals with alcohols or chloride-alkoxide interchange), sometimes tends to be complicated due to the incorporation of chloride or oxide moieties within the structural framework of the final alkoxide product. [Pg.259]

The strategy of metal alkoxides synthesis is entirely related to the electronegativity of the element concerned. Some electropositive metals, such as alkali metals, alkaline earth metals, and lanthanides, react directly with alcohols. But some less electropositive metals such as magnesium and aluminum require a catalyst (I or HgCy for successful reaction with alcohols. Use of electrochemical synthesis by anodic dissolution of some metals or metalloids (Sc, Y, Ti, Zr, Nb, Ta, Fe, Co, Ni, Cu, Pb, Si, Ge, etc.) in dry alcohol performs a promising procedure because it does not produce any by-products except hydrogen gas. Another applicable method for the synthesis of some alkoxides (B, Si, Ti, Zr, Hf, Nb, Ta, Fe, etc.) is the reaction of their chlorides with alcohols which require a base such as... [Pg.226]

Silyl ethers serve as preeursors of nucleophiles and liberate a nucleophilic alkoxide by desilylation with a chloride anion generated from CCI4 under the reaction conditions described before[124]. Rapid intramolecular stereoselective reaction of an alcohol with a vinyloxirane has been observed in dichloro-methane when an alkoxide is generated by desilylation of the silyl ether 340 with TBAF. The cis- and tru/u-pyranopyran systems 341 and 342 can be prepared selectively from the trans- and c/.y-epoxides 340, respectively. The reaction is applicable to the preparation of 1,2-diol systems[209]. The method is useful for the enantioselective synthesis of the AB ring fragment of gambier-toxin[210]. Similarly, tributyltin alkoxides as nucleophiles are used for the preparation of allyl alkyl ethers[211]. [Pg.336]

Both reactants m the Williamson ether synthesis usually originate m alcohol pre cursors Sodium and potassium alkoxides are prepared by reaction of an alcohol with the appropriate metal and alkyl halides are most commonly made from alcohols by reaction with a hydrogen halide (Section 4 7) thionyl chloride (Section 4 13) or phosphorus tri bromide (Section 4 13) Alternatively alkyl p toluenesulfonates may be used m place of alkyl halides alkyl p toluenesulfonates are also prepared from alcohols as their imme diate precursors (Section 8 14)... [Pg.673]

In early work, vinyl chloride had been heated with stoichiometric amounts of alkaU alkoxides in excess alcohol as solvent, giving vinyl ethers as products (210). Supposedly this involved a Williamson ether synthesis, where alkaU alkoxide and organic haUde gave an ether and alkaU haUde. However, it was observed that small amounts of acetylene were formed by dehydrohalogenation of vinyl chloride, and that this acetylene was consumed as the reaction proceeded. Hence acetylene was substituted for vinyl chloride and only catalytic amounts of alkaU were used. Vinylation proceeded readily with high yields (211). [Pg.114]

Synthesis. Titanium alkoxy halides are intermediates in the preparation of alkoxides from a titanium tetrahaUde (except the fluoride) and an alcohol or phenol. If TiCl is heated with excess primary alcohol, only two chlorine atoms can be replaced and the product is dialkoxydichlorotitanium alcoholate, (RO)2TiCl2 ROH. The yields are poor, and some alcohols, such as aHyl, ben2yl, and /-butyl alcohols, are converted to chlorides (46). Using excess TiCl at 0°C, the trichloride ROTiCl is obtained nearly quantitatively, even from sec- and / f/-alcohols (47,48). [Pg.144]

The advantages of titanium complexes over other metallic complexes is high selectivity, which can be readily adjusted by proper selection of ligands. Moreover, they are relative iaert to redox processes. The most common synthesis of chiral titanium complexes iavolves displacement of chloride or alkoxide groups on titanium with a chiral ligand, L ... [Pg.151]

The conversion of chlorohydrins into epoxides by the action of base is an adaptation of the Williamson synthesis of ethers. In the presence of hydroxide ion, a small proportion of the alcohol exists as alkoxide, which displaces the chloride ion from the adjacent carbon atom to produce a cycHc ether (2). [Pg.72]

Titanium, tetrakis(trimethysilyl)oxy-, 3, 334 Titanium, tetranitrato-stereochemistry, 1,94 Titanium, triaquabis(oxalato)-structure, I, 78 Titanium, tris(acetylacetone)-structurc, 1,65 Titanium alkoxides oligomeric structure, 2,346 synthesis ammonia, 2, 338 Titanium chloride photographic developer, 6,99 Titanium complexes acetylacetone dinuclear, 2, 372 alkyl... [Pg.236]

The organotin alkoxides RgSnOR and R2Sn(OR >2 can be prepared by treating the appropriate organotin chlorides with sodium alkoxides, and this procedure has been extended to the preparation of the monoal-kyltin trialkoxides, RSnCOR la (190), which serve as useful reagents for the synthesis of other monoalkyltin derivatives. Alternatively, the trialkoxides can be prepared by alcoholysis of the tris(amino) compounds RSn(NR )3 (191). [Pg.17]

A useful application of the silver-mediated additions is 1,3 -diene synthesis by three-carbon elongation of aldehydes [48,51,53]. The bimetallic reagent 3-trimethylsilyl-l-propenylzirco-nocene chloride (A Scheme 8.23) reacts with aldehydes under the influence of a catalytic amount of Ag+ to give the intermediate zirconocene-alkoxide B, which then undergoes a Peterson-type 1,4-elimination of TMS alkoxide to stereoselectively afford ( )-dienes (fc/Z > 96 4) (Scheme 8.23). A Wittig reaction yields the same products without stereoselectivity (ca. 1 1 mixtures of E- and Z-isomers). [Pg.299]

Furthermore, the preparation and reactions of 2-methoxythiophene were studied by Sice (70). This compound was obtained by a copper catalysed Williamson synthesis. It was also found that iodothiophene reacted readily with sodium alkoxides, whereas bromothiophene reacted slowly and chlorothiophene did not react at all. Sodium iodide accelerated the reaction of bromothiophene. The ortho, para orienting alkoxy group on carbon atom 2 increased the directive influence of the sulphur atom to the 5 position but competed with it to induce some attack on the 3 position by electrophilic reagents (nitration, acylation). The acylation of 2-methoxythiophene with stannic chloride at low temperatures furnished a mixture of two isomers. The 5-methoxy-2-acetothienone was obtained in higher yield and was identified by its ultraviolet absorption spectrum. [Pg.137]

Complete control of the diastereoselectivity of the synthesis of 1,3-diols has been achieved by reagent selection in a one-pot tandem aldol-reduction sequence (see Scheme l). i Anti-selective method (a) employs titanium(IV) chloride at 5°C, followed by Ti(OPr )4, whereas method (b), using the tetrachloride with a base at -78 °C followed by lithium aluminium hydride, reverses the selectivity. A non-polar solvent is required (e.g. toluene or dichloromethane, not diethyl ether or THF), and at the lower temperature the titanium alkoxide cannot bring about the reduction of the aldol. Tertiary alkoxides also fail, indicating a similarity with the mechanism of Meerwein-Ponndorf reduction. [Pg.13]

The presence of three nitro groups on the aromatic ring of picryl chloride makes the chloro group extremely reactive towards nucleophiles. Picryl chloride (87) is hydrolyzed to picric acid (4) in the presence of hot water or aqueous sodium hydroxide. Aminolysis of picryl chloride in the presence of primary and secondary amines is complete in minutes at room temperature. Picryl chloride is therefore a very useful starting material for the synthesis of a range of other picryl derivatives. The reaction of picryl chloride (87) with ammonia can be used to synthesize 2,4,6-trinitroaniline (53) (picramide). Treatment of picryl chloride with alcohols under reflux forms picric acid and the alkyl chloride of the corresponding alcohol, whereas the same reaction in the presence of alkali metal hydroxides, or the alkoxide anion of... [Pg.158]

A six-step synthesis of nonactic acid with excellent stereocontrol via sultone intermediates has been published (Scheme 26) <1998EJO2073>. The tricyclic sultone 107 was synthesized by a tandem esterification/cycloaddition with vinylsulfonyl chloride whereby only the fvo-adduct with fvo-Me was obtained <1989AGE202>. Next, the tandem elimination/alkoxide-directed 1,6-addition first led to a mixture of sulfones, but equilibration with catalytic... [Pg.699]

Methyl- 1,3-cyclopentanedione is a key intermediate for the total synthesis of steroids.2 A number of methods have been described for its preparation, among them the condensation of succinic acid with propionyl chloride,3 and that of succinic anhydride with 2-buten-2-ol acetate,4 both in the presence of aluminum chloride. It has also been obtained from 3-methylcyclopentane-1,2,4-trione by catalytic hydrogenation5 and Wolff-Kishner reduction 6 The base-promoted cyclization of 4-oxohexanoic acid ethyl ester and diethyl propionylsuccinate with tertiary alkoxides was first reported by Bucourt.7 The present cyclization process provides an experimentally simple route to 2-methyl-1,3-cyclopentanedione. Using the same procedure, 4-oxoheptanoic acid ethyl ester has been cyclized to give 2-ethyl-l,3-cyclopentanedione in 46% yield... [Pg.85]


See other pages where Chloride alkoxide synthesis is mentioned: [Pg.528]    [Pg.193]    [Pg.75]    [Pg.348]    [Pg.104]    [Pg.81]    [Pg.71]    [Pg.870]    [Pg.144]    [Pg.102]    [Pg.390]    [Pg.223]    [Pg.114]    [Pg.48]    [Pg.6]    [Pg.114]    [Pg.648]    [Pg.560]    [Pg.932]    [Pg.93]    [Pg.181]    [Pg.126]    [Pg.302]    [Pg.161]    [Pg.389]    [Pg.1321]   
See also in sourсe #XX -- [ Pg.249 ]




SEARCH



Alkoxides synthesis

Synthesis chloride

© 2024 chempedia.info