Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chirality and Enantiomers

Figure 8.9. Simultaneous measurement of electric susceptibility (relative dielectric constants of the chiral enantiomer and racemate, top) and tilt susceptibility xe (labeled as 6/E, middle) and ratio k = x Xo) /x (bottom) in the smectic- phase of the chiral compound A7 (from [61]). Figure 8.9. Simultaneous measurement of electric susceptibility (relative dielectric constants of the chiral enantiomer and racemate, top) and tilt susceptibility xe (labeled as 6/E, middle) and ratio k = x Xo) /x (bottom) in the smectic- phase of the chiral compound A7 (from [61]).
To be optically active the sample must contain a chiral substance and one enantiomer must be present in excess of the other A subslance lhal does nol rolale fhe plane of polar ized lighl IS said lo be ophcally maclive All achiral substances are optically inactive... [Pg.287]

The same kind of spontaneous racemization oc curs for any as 1 2 disubstituted cyclohexane in which both substituents are the same Because such compounds are chiral it is incorrect to speak of them as meso compounds which are achiral by definition Rapid chair-chair interconversion however converts them to a 1 1 mixture of enantiomers and this mix ture IS optically inactive... [Pg.305]

Steroids are another class of natural products with multiple chirality centers One such compound is cholic acid which can be obtained from bile Its structural formula IS given m Figure 7 12 Cholic acid has 11 chirality centers and so a total (including cholic acid) of 2" or 2048 stereoisomers have this constitution Of these 2048 stereoiso mers how many are diastereomers of cholic acid s Remember Diastereomers are stereoisomers that are not enantiomers and any object can have only one mirror image Therefore of the 2048 stereoisomers one is cholic acid one is its enantiomer and the other 2046 are diastereomers of cholic acid Only a small fraction of these compounds are known and (+) cholic acid is the only one ever isolated from natural sources... [Pg.306]

The enzyme is a single enantiomer of a chiral molecule and binds the coenzyme and substrate m such a way that hydride is transferred exclusively to the face of the carbonyl group that leads to (5) (+) lactic acid Reduction of pyruvic acid m the absence of an enzyme however say with sodium borohydride also gives lactic acid but as a racemic mixture containing equal quantities of the R and S enantiomers... [Pg.735]

Traditionally, chiral separations have been considered among the most difficult of all separations. Conventional separation techniques, such as distillation, Hquid—Hquid extraction, or even some forms of chromatography, are usually based on differences in analyte solubiUties or vapor pressures. However, in an achiral environment, enantiomers or optical isomers have identical physical and chemical properties. The general approach, then, is to create a "chiral environment" to achieve the desired chiral separation and requires chiral analyte—chiral selector interactions with more specificity than is obtainable with conventional techniques. [Pg.60]

An alternative model has been proposed in which the chiral mobile-phase additive is thought to modify the conventional, achiral stationary phase in situ thus, dynamically generating a chiral stationary phase. In this case, the enantioseparation is governed by the differences in the association between the enantiomers and the chiral selector in the stationary phase. [Pg.61]

Most chiral chromatographic separations are accompHshed using chromatographic stationary phases that incorporate a chiral selector. The chiral separation mechanisms are generally thought to involve the formation of transient diastereomeric complexes between the enantiomers and the stationary phase chiral ligand. Differences in the stabiHties of these complexes account for the differences in the retention observed for the two enantiomers. Often, the use of a... [Pg.61]

When additional substituents ate bonded to other ahcycHc carbons, geometric isomers result. Table 2 fists primary (1°), secondary (2°), and tertiary (3°) amine derivatives of cyclohexane and includes CAS Registry Numbers for cis and trans isomers of the 2-, 3-, and 4-methylcyclohexylamines in addition to identification of the isomer mixtures usually sold commercially. For the 1,2- and 1,3-isomers, the racemic mixture of optical isomers is specified ultimate identification by CAS Registry Number is fisted for the (+) and (—) enantiomers of /n t-2-methylcyclohexylamine. The 1,4-isomer has a plane of symmetry and hence no chiral centers and no stereoisomers. The methylcyclohexylamine geometric isomers have different physical properties and are interconvertible by dehydrogenation—hydrogenation through the imine. [Pg.206]

The principle of this method depends on the formation of a reversible diastereomeric complex between amino acid enantiomers and chiral addends, by coordination to metal, hydrogen bonding, or ion—ion mutual action, in the presence of metal ion if necessary. L-Proline (60), T.-phenylalanine (61),... [Pg.279]

An hplc assay was developed suitable for the analysis of enantiomers of ketoprofen (KT), a 2-arylpropionic acid nonsteroidal antiinflammatory dmg (NSAID), in plasma and urine (59). Following the addition of racemic fenprofen as internal standard (IS), plasma containing the KT enantiomers and IS was extracted by Hquid-Hquid extraction at an acidic pH. After evaporation of the organic layer, the dmg and IS were reconstituted in the mobile phase and injected onto the hplc column. The enantiomers were separated at ambient temperature on a commercially available 250 x 4.6 mm amylose carbamate-packed chiral column (chiral AD) with hexane—isopropyl alcohol—trifluoroacetic acid (80 19.9 0.1) as the mobile phase pumped at 1.0 mL/min. The enantiomers of KT were quantified by uv detection with the wavelength set at 254 nm. The assay allows direct quantitation of KT enantiomers in clinical studies in human plasma and urine after adrninistration of therapeutic doses. [Pg.245]

Reaction of an achiral reagent with a molecule exhibiting enantiotopic faces will produce equal quantities of enantiomers, and a racemic mixture will result. The achiral reagent sodium borodeuteride, for example, will produce racemic l-deM/eno-ethanol. Chiral reagent can discriminate between the prochiral faces, and the reaction will be enantioselective. Enzymatic reduction of acetaldehyde- -[Pg.106]

Consider the stereochemical relationships between these flexible stereoisomers. A flexible molecule is chiral only if each of its conformers is chiral and if no two conformers are mirror images. Which, if any, of the stereoisomers are chiral Rexible chiral molecules are enantiomers only if each of their conformers are mirror-images. Which, if any, of the stereoisomers are enantiomers and which are diastereomers ... [Pg.69]

Today, however, GC-GC coupling is seldom used to determine pesticides in environmental samples (2), although comprehensive MDGC has been applied to determine pesticides in more complex samples, such as human serum (19). On the other-hand, new trends in the pesticide market, which is now moving towards the production of optically active enantiomers and away from racemic mixtures, may make this area suitable for GC-GC application. The coupling of non-chiral columns to chiral columns appears to be a suitable solution to the separation problems that such a trend might cause. [Pg.337]


See other pages where Chirality and Enantiomers is mentioned: [Pg.301]    [Pg.102]    [Pg.19]    [Pg.707]    [Pg.353]    [Pg.906]    [Pg.241]    [Pg.190]    [Pg.301]    [Pg.102]    [Pg.19]    [Pg.707]    [Pg.353]    [Pg.906]    [Pg.241]    [Pg.190]    [Pg.76]    [Pg.296]    [Pg.311]    [Pg.1122]    [Pg.63]    [Pg.69]    [Pg.186]    [Pg.188]    [Pg.190]    [Pg.177]    [Pg.239]    [Pg.241]    [Pg.242]    [Pg.263]    [Pg.96]    [Pg.99]    [Pg.337]    [Pg.260]    [Pg.296]    [Pg.311]    [Pg.1122]    [Pg.284]    [Pg.142]    [Pg.69]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



Chiral enantiomers

Chirality/Chiral enantiomers

© 2024 chempedia.info