Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral overview

A large number of chiral crowns have been prepared by numerous groups. The reader is directed to the tables at the end of this chapter to obtain an overview of these structures. It would not be useful to try to recount the synthetic approaches used in the preparation of all of these compounds we have chosen rather to subdivide this mass of compounds into three principal groups. The groups are (1) Cram s chiral binaphthyl systems (2) chiral crowns based on the tartaric acid unit and (3) crowns incorporating sugar subunits. These are discussed in turn, below. [Pg.47]

In this chapter we will provide an overview of the application of membrane separations for chiral resolutions. As we will focus on physical separations, the use of membranes in kinetic (bio)resolutions will not be discussed. This chapter is intended to provide an impression, though not exhaustive, of the status of the development of membrane processes for chiral separations. The different options will be discussed on the basis of their applicability on a large scale. [Pg.128]

Armstrong and Jin [15] reported the separation of several hydrophobic isomers (including (l-ferrocenylethyl)thiophenol, 1 -benzylnornicotine, mephenytoin and disopyramide) by cyclodextrins as chiral selectors. A wide variety of crown ethers have been synthesized for application in enantioselective liquid membrane separation, such as binaphthyl-, biphenanthryl-, helicene-, tetrahydrofuran and cyclohex-anediol-based crown ethers [16-20]. Brice and Pirkle [7] give a comprehensive overview of the characteristics and performance of the various crown ethers used as chiral selectors in liquid membrane separation. [Pg.131]

The chemistry of aziridine-2-carboxylates and phosphonates has been discussed in part in several reviews covering the literature through 1999 [1-3], This chapter is intended to give an overview of asymmetric syntheses using chiral nonracemic aziridine-2-carboxylates and -phosphonates with particular emphasis on their applications as chiral building blocks in asymmetric synthesis since 2000. Some overlap with earlier reviews is necessary for the sake of continuity. [Pg.73]

During our research in this field of small-ring heterocycles we found that functionahzed aziridines are attractive chiral catalysts, e.g., in the diethylzinc addition to aldehydes. Aspects of such uses of aziridines will be discussed as well. This overview does not pretend to be an exhaustive coverage of all existing literature on small-ring aza-heterocycles as that would require a separate monograph. Instead, emphasis is put on functionahzed three-membered aza-heterocycles, that were investigated in the author s laboratory [1], and relevant related literature. The older literature on these heterocycles is adequately summarized in some extensive reviews [2]. Chiral aziridines have been reviewed recently by Tanner [3], by Osborn and Sweeney [4], and by McCoull and Davis [5]. [Pg.94]

Abstract After an overview of chiral urea and thiourea synthetic methods, this review describes the main applications of urea and thiourea complexes in asymmetric catalysis. Some recent examples of thioureas as catalysts are also presented. Coordination chemistry of ureas and thioureas is briefly discussed. [Pg.232]

These is no formal method of categorizing the types of chiral stationary phases available for liquid chromatography (784). This diversity is both a strength, in providing a wide range of possibilities to solve a particular problem, and a weakness in that it is often difficult to predict which phase will be most useful for solving a particular problem. Compilations of commercially available chiral stationary phases and their proven applications are available (780-785). As new phases continue to be introduced at a hectic pace only a brief overview of their properties will be attempted here. [Pg.967]

Scarso A, Rebek Jr J (2006) Chiral Spaces in Supramolecular Assemblies. 265 1-46 Schaumann E (2007) Sulfur is More Than the Fat Brother of Oxygen. An Overview of Organosulfur Chemistry. 274 1-34... [Pg.264]

An overview of the catalytically active M-L systems is presented in terms of both achiral and chiral reactions. Where deemed appropriate, reference is also made to organometallic and organolanthanide catalysts, as well as (briefly) H—X addition to C=0. [Pg.266]

In the following sections we will first in Section 2 briefly discuss the necessary background to understand optical activity effects in linear and nonlinear optics and to illustrate the similarities and differences between both types. In Section 3 we present a more thorough analysis of nonlinear optical effects in second-harmonic generation, both from a theoretical and an experimental point of view. Section 4 deals with experimental examples that illustrate the usefulness of nonlinear optical activity in the study of chiral thin films and surfaces. Finally, in Section 5 we give an overview of the role of chirality in the field of second-order nonlinear optics and show that chiral molecules can be useful for applications in this field. [Pg.521]

This volume of Topics in Stereochemistry could not be complete without hearing about ferroelectric liquid crystals, where chirality is the essential element behind the wide interest in this mesogenic state. In Chapter 8, Walba, a pioneering contributor to this area, provides a historical overview of the earlier key developments in this field and leads us to the discovery of the unique banana phases. This discussion is followed by a view of the most recent results, which involve, among others, the directed design of chiral ferroelectric banana phases, which display spontaneous polar symmetry breaking in a smectic liquid crystal. [Pg.618]

Asymmetric catalysis is a vital and rapidly growing branch of modern organic chemistry. Within this context, Ti- and Zr-based chiral catalysts have played a pivotal role in the emergence of a myriad of efficient and enantioselective protocols for asymmetric synthesis. In this chapter, a critical overview of enantioselective reactions promoted by chiral Zr-based catalysts is provided. Since an account of this type is most valuable when it provides a context for advances made in a particular area of research, when appropriate, a brief discussion of related catalytic asymmetric reactions promoted by non-Zr-based catalysts is presented as well. [Pg.180]

This article provides a brief overview of several recent total syntheses of natural and unnatural products that have benefited from the use of catalytic asymmetric processes. The article is divided by the type of bond formation that the catalytic enan-tioselective reaction accomplishes (e.g C-C or C-0 bond formation). Emphasis is made on instances where a catalytic asymmetric reaction is utilized at a critical step (or steps) within a total synthesis however, cases where catalytic enantioselective transformations are used to prepare the requisite chiral non-racemic starting materials are also discussed. At the close of the article, two recent total syntheses are examined, where asymmetric catalytic reactions along with a number of other catalyzed processes are the significant driving force behind the successful completion of these efforts (Catalysis-Based Total Syntheses). [Pg.146]

Although the use of abundant sugars as starting materials for chiral synthesis has received considerable attention, the ready availability of many aldonolactones is less well recognized by mainstream synthetic organic chemists. The chapter here contributed by de Lederkremer and Varela (Buenos Aires) provides a comprehensive overview of the practical potential of these cyclic esters and complements the more specialized contribution on gulonolactones by Crawford in Volume 38. [Pg.416]

In this way, we aim to give an overview of what can be used as a separation technique and which conditions will most likely give an (beginning of) enantiomer separation after a first screening. Chiral method development starter kits are also available and evaluated in some papers [2], but we will not focus on this kind of applications. [Pg.176]

Chiral separation of drng molecules and of their precursors, in the case of synthesis of enantiomerically pure drugs, is one of the important application areas of HPLC in pharmaceutical analysis. Besides HPLC, capillary electrophoresis (CE) is another technique of choice for chiral separations. Chapter 18 provides an overview of the different modes (e.g., direct and indirect ones) of obtaining a chiral separation in HPLC and CE. The direct approaches, i.e., those where the compound of interest is not derivatized prior to separation, are discussed in more detail since they are cnrrently the most frequently used techniques. These approaches require the use of the so-called chiral selectors to enable enantioselective recognition and enantiomeric separation. Many different molecnles have been nsed as chiral selectors, both in HPLC and CE. They can be classified into three different groups, based on their... [Pg.12]

The aim of this chapter is to give an overview of chiral separations of pharmaceutical compounds by means of HPLC. Capillary electrophoresis, which is the most popular technique besides HPLC for performing chiral separations at the analytical level, will also be briefly discussed. A second reason to discuss chiral separation in CE in short is the large overlap in the chiral selectors applied in both techniques. [Pg.450]


See other pages where Chiral overview is mentioned: [Pg.247]    [Pg.354]    [Pg.231]    [Pg.4]    [Pg.246]    [Pg.23]    [Pg.396]    [Pg.3]    [Pg.158]    [Pg.223]    [Pg.2]    [Pg.564]    [Pg.567]    [Pg.614]    [Pg.833]    [Pg.1280]    [Pg.474]    [Pg.390]    [Pg.98]    [Pg.86]    [Pg.67]    [Pg.100]    [Pg.175]    [Pg.177]   
See also in sourсe #XX -- [ Pg.434 ]




SEARCH



© 2024 chempedia.info