Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral ligands, preparation

The ship-in-a-bottle technique is perhaps the most common method for encapsulation of transition metal complexes. In this way the tetradentate Schiff base ligand SALEN (bis-salicylidene) ethylenediamine can diffuse through the 12 MR windows of faujasite. Then, when complexed with a previously exchanged metal ion, nearly square planar coordination geometry is formed inside the a-cages [97-100], Mn complexes with a chiral ligand, prepared by the ship-in-a-bottle technique inside Y and EMT zeolites, have enantioselectively carried at the epoxidation of olefins [101,102]. [Pg.88]

Simple esters cannot be allylated with allyl acetates, but the Schiff base 109 derived from o -amino acid esters such as glycine or alanine is allylated with allyl acetate. In this way. the o-allyl-a-amino acid 110 can be prepared after hydrolysis[34]. The Q-allyl-o-aminophosphonate 112 is prepared by allylation of the Schiff base 111 of diethyl aminomethylphosphonates. [35,36]. Asymmetric synthesis in this reaction using the (+ )-A, jV-dicyclohex-ylsulfamoylisobornyl alcohol ester of glycine and DIOP as a chiral ligand achieved 99% ec[72]. [Pg.306]

The Sharpless-Katsuki asymmetric epoxidation reaction (most commonly referred by the discovering scientists as the AE reaction) is an efficient and highly selective method for the preparation of a wide variety of chiral epoxy alcohols. The AE reaction is comprised of four key components the substrate allylic alcohol, the titanium isopropoxide precatalyst, the chiral ligand diethyl tartrate, and the terminal oxidant tert-butyl hydroperoxide. The reaction protocol is straightforward and does not require any special handling techniques. The only requirement is that the reacting olefin contains an allylic alcohol. [Pg.50]

To overcome these problems with the first generation Brmsted acid-assisted chiral Lewis acid 7, Yamamoto and coworkers developed in 1996 a second-generation catalyst 8 containing the 3,5-bis-(trifluoromethyl)phenylboronic acid moiety [10b,d] (Scheme 1.15, 1.16, Table 1.4, 1.5). The catalyst was prepared from a chiral triol containing a chiral binaphthol moiety and 3,5-bis-(trifluoromethyl)phenylboronic acid, with removal of water. This is a practical Diels-Alder catalyst, effective in catalyzing the reaction not only of a-substituted a,/ -unsaturated aldehydes, but also of a-unsubstituted a,/ -unsaturated aldehydes. In each reaction, the adducts were formed in high yields and with excellent enantioselectivity. It also promotes the reaction with less reactive dienophiles such as crotonaldehyde. Less reactive dienes such as isoprene and cyclohexadiene can, moreover, also be successfully employed in reactions with bromoacrolein, methacrolein, and acrolein dienophiles. The chiral ligand was readily recovered (>90%). [Pg.13]

Since Evans s initial report, several chiral Lewis acids with copper as the central metal have been reported. Davies et al. and Ghosh et al. independently developed a bis(oxazoline) ligand prepared from aminoindanol, and applied the copper complex of this ligand to the asymmetric Diels-Alder reaction. Davies varied the link between the two oxazolines and found that cyclopropyl is the best connector (see catalyst 26), giving the cycloadduct of acryloyloxazolidinone and cyclopentadiene in high optical purity (98.4% ee) [35] (Scheme 1.45). Ghosh et al., on the other hand, obtained the same cycloadduct in 99% ee by the use of unsubstituted ligand (see catalyst 27) [36] (Scheme 1.46, Table 1.19). [Pg.32]

We therefore prepared a new chiral ligand, (l ,J )-isopropylidene-2,2 -bis[4-(o-hy-droxybenzyl)oxazoline)], hereafter designated J ,J -BOX/o-HOBn. To our delight, the copper(II) complex catalyst prepared from J ,J -BOX/o-HOBn ligand and Cu(OTf)2 was quite effective (Scheme 7.45). Especially, the reaction of O-benzylhydroxylamine with l-crotonoyl-3-isopropyl-2-imidazolidinone in dichloromethane (0.15 m) at -40°C in the presence of J ,J -BOX/o-HOBn-Cu(OTf)2 (10 mol%) provided the maximum enantioselectivity of 94% ee. [Pg.289]

Optically active alkynyl alcohols can, however, be conveniently prepared by the addition of dialkylzinc reagents of alkynyl aldehydes catalyzed by the chiral ligand (S)-l-methyl-a,a-diphenyl-2-pyrrolidine methanol33-34. [Pg.182]

Combination of nickel bromide (or nickel acetylacetonate) and A. A -dibutylnorephcdrinc catalyzed the enantioselective conjugate addition of dialkylzincs to a./Tunsaturated ketones to afford optically active //-substituted ketones in up to ca. 50% ee53. Use of the nickel(II) bipyridyl-chiral ligand complex in acetonitrile/toluenc as an in situ prepared catalyst system afforded the //-substituted ketones 2, from aryl-substituted enones 1, in up to 90% ee54. [Pg.910]

It should also be noted that the 5-exo-trig cyclization of achiral olefinic organolithiums has been found to proceed enantioselectively when conducted in the presence of a chiral ligand that serves to render the lithium atom stereogenic. Thus, for example, R) 1 -allyl-3-methylindolinc has been prepared in 86 % ee by cyclization of an achiral aryllithium in the presence of an equivalent of (-)-sparteine.15... [Pg.67]

Binaphthol-derived titanium complexes [64], prepared from chiral ligands 65 (Figure 3.13), also performed very well in the cycloadditions of conjugated aldehydes with cyclic and acyclic dienes. Judging from the absolute configurations of endo and exo adducts, this catalyst should cover the re-face of carbonyl on its u tz-coordination to s-trans a,/l-unsaturated aldehydes, and hence dienes should approach selectively from the si-face. [Pg.120]

In recent years, the catalytic asymmetric hydrogenation of a-acylamino acrylic or cinnamic acid derivatives has been widely investigated as a method for preparing chiral a-amino acids, and considerable efforts have been devoted for developing new chiral ligands and complexes to this end. In this context, simple chiral phosphinous amides as well as chiral bis(aminophosphanes) have found notorious applications as ligands in Rh(I) complexes, which have been used in the asymmetric hydrogenation of a-acylamino acrylic acid derivatives (Scheme 43). [Pg.99]

Glos and Reiser [23] introduced aza-bis(oxazolines) as new chiral ligands for copper and palladium catalysts. Because of the structural flexibility of these compounds they also prepared an immobilized ligand by covalent grafting to methoxypoly(ethyleneglycol) (structures 14 and 15 in Scheme 9). [Pg.100]

Pyridine-based N-containing ligands have been tested in order to extend the scope of the copper-catalyzed cyclopropanation reaction of olefins. Chelucci et al. [33] have carefully examined and reviewed [34] the efficiency of a number of chiral pyridine derivatives as bidentate Hgands (mainly 2,2 -bipyridines, 2,2 6, 2 -terpyridines, phenanthrolines and aminopyridine) in the copper-catalyzed cyclopropanation of styrene by ethyl diazoacetate. The corresponding copper complexes proved to be only moderately active and enantios-elective (ee up to 32% for a C2-symmetric bipyridine). The same authors prepared other chiral ligands with nitrogen donors such as 2,2 -bipyridines 21, 5,6-dihydro-1,10-phenanthrolines 22, and 1,10-phenanthrolines 23 (see Scheme 14) [35]. [Pg.104]

The mesoporous character of MCM-41 overcomes the size limitations imposed by the use of zeolites and it is possible to prepare the complex by refluxing the chiral ligand in the presence of Mn +-exchanged Al-MCM-41 [34-36]. However, this method only gives 10% of Mn in the form of the complex, as shown by elemental analysis, and good results are only possible due to the very low catalytic activity of the uncomplexed Mn sites. The immobihzed catalyst was used in the epoxidation of (Z)-stilbene with iodosylbenzene and this led to a mixture of cis (meso) and trans (chiral) epoxides. Enantioselectivity in the trans epoxides was up to 70%, which is close to the value obtained in solution (78% ee). However, this value was much lower when (E)-stilbene was used (25% ee). As occurred with other immobilized catalysts, reuse of the catalyst led to a significant loss in activity and, to a greater extent, in enantioselectivity. [Pg.165]

Since carbohydrates constitute an inexpensive and highly modular chiral source for preparing chiral ligands," Claver et al. have reported the use of a series of thioether-phosphite" and thioether-phosphinite furanoside ligands" in the test palladium-catalysed allylic substitution reaction. In the first type of ligand, a systematic variation of the donor group attached to the carbon atom C5 indicated that the presence of a bulky phosphite functionality had a positive effect on the enantioselectivity. Indeed, the enantioselectivity was controlled mainly by the phosphite moiety. This was confirmed by the use of a ligand... [Pg.20]


See other pages where Chiral ligands, preparation is mentioned: [Pg.155]    [Pg.512]    [Pg.6]    [Pg.310]    [Pg.690]    [Pg.221]    [Pg.355]    [Pg.907]    [Pg.206]    [Pg.89]    [Pg.54]    [Pg.191]    [Pg.115]    [Pg.17]    [Pg.22]    [Pg.29]    [Pg.62]    [Pg.90]    [Pg.91]    [Pg.95]    [Pg.95]    [Pg.108]    [Pg.155]    [Pg.160]    [Pg.165]    [Pg.166]    [Pg.185]    [Pg.242]    [Pg.272]    [Pg.191]    [Pg.203]    [Pg.2]    [Pg.32]    [Pg.41]    [Pg.56]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Chiral ligands

Chiral preparation

Chiral preparative

Ligand preparation

Ligands chirality

© 2024 chempedia.info