Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral amines asymmetric synthesis

Enantioselective addition of dialkylzincs to imines using chiral ligands asymmetric synthesis of optically active amines... [Pg.254]

The interest in asymmetric synthesis that began at the end of the 1970s did not ignore the dihydroxylation reaction. The stoichiometric osmylation had always been more reliable than the catalytic version, and it was clear that this should be the appropriate starting point. Criegee had shown that amines, pyridine in particular, accelerated the rate of the stoichiometric dihydroxylation, so it was understandable that the first attempt at nonenzymatic asymmetric dihydroxylation was to utilize a chiral, enantiomerically pure pyridine and determine if this induced asymmetry in the diol. This principle was verified by Sharpless (Scheme 7).20 The pyridine 25, derived from menthol, induced ee s of 3-18% in the dihydroxylation of /rcms-stilbene (23). Nonetheless, the ee s were too low and clearly had to be improved. [Pg.678]

In asymmetric Strecker synthesis ( + )-(45,55 )-5-amino-2,2-dimethyl-4-phenyl-l,3-dioxane has been introduced as an alternative chiral auxiliary47. The compound is readily accessible from (lS,25)-2-amino-l-phcnyl-l,3-propancdioI, an intermediate in the industrial production of chloramphenicol, by acctalization with acetone. This chiral amine reacts smoothly with methyl ketones of the arylalkyl47 or alkyl series48 and sodium cyanide, after addition of acetic acid, to afford a-methyl-a-amino nitriles in high yield and in diastereomerically pure form. [Pg.789]

In Ugi four-component reactions (for mechanism, see Section 1.4.4.1.) all four components may potentially serve as the stereodifferentiating tool65. However, neither the isocyanide component nor the carboxylic acid have pronounced effects on the overall stereodiscrimination60 66. As a consequence, the factors influencing the stereochemical course of Ugi reactions arc similar to those in Strecker syntheses. The use of chiral aldehydes is commonly found in substrate-controlled syntheses whereas the asymmetric synthesis of new enantiomerically pure compounds via Ugi s method is restricted to the application of optically active amines as the chiral auxiliary group. [Pg.795]

Diastereoselective and enantioselective [3C+2S] carbocyclisations have been recently developed by Barluenga et al. by the reaction of tungsten alkenylcarbene complexes and enamines derived from chiral amines. Interestingly, the regio-chemistry of the final products is different for enamines derived from aldehydes and those derived from ketones. The use of chiral non-racemic enamines allows the asymmetric synthesis of substituted cyclopentenone derivatives [77] (Scheme 30). [Pg.82]

Chiral amines and diamines are readily available substrates for the synthesis of ligands for transition metal-catalysed reactions since they can easily be transformed into chiral ureas and thioureas. Therefore, several groups have prepared chiral symmetrical ureas and thioureas, dissymmetrical ureas and thioureas, amino-urea and thiourea derivatives. Finally polyureas and non-soluble polythioureas were also prepared and tested as ligands for asymmetric catalysis. [Pg.233]

Enantioenriched alcohols and amines are valuable building blocks for the synthesis of bioactive compounds. While some of them are available from nature s chiral pool , the large majority is accessible only by asymmetric synthesis or resolution of a racemic mixture. Similarly to DMAP, 64b is readily acylated by acetic anhydride to form a positively charged planar chiral acylpyridinium species [64b-Ac] (Fig. 43). The latter preferentially reacts with one enantiomer of a racemic alcohol by acyl-transfer thereby regenerating the free catalyst. For this type of reaction, the CsPhs-derivatives 64b/d have been found superior. [Pg.168]

Anderson CE, Donde Y, Douglas CJ, Overman LE (2005) Catalytic asymmetric synthesis of chiral allylic amines. Evaluation of ferrocenyloxazoline palladacycle catalysts and imidate motifs. J Org Chem 70 648-657... [Pg.173]

Waldmann used (R) and (5>aminoacid methyl esters and chiral amines as chiral auxiliaries in analogous aza-Diels-Alder reactions with cyclodienes.111 The diastereoselectivity of these reactions ranged from moderate to excellent and the open-chain dienes reacted similarly. Recently, the aza-Diels-Alder reaction was used by Waldmann in the asymmetric synthesis of highly functionalized tetracyclic indole derivatives (Eq. 12.45), which is useful for the synthesis of yohimbine- and reserpine-type alkaloids.112... [Pg.402]

The first asymmetric synthesis of (-l-)-abresoline was achieved from the chiral piperidine derivative 153, which upon treatment of its hydroxy side-chain substituent with carbon tetrabromide, triphenylphosphine, and triethyl-amine cyclized to the frarcr-quinazolidine 154. Deketalization and silyl protection of the phenolic group, followed by stereoselective reduction with lithium tri-t -butylborohydride (L-Selectride ), gave an alcohol, which after acylation and deprotection furnished (-l-)-abresoline 155 (Scheme 25) <2005TL2669>. [Pg.26]

An asymmetric synthesis of phosphonylated thiazolines has been described. The phosphonodithioacetate 46 was aminated with a chiral amino alcohol 47 to give the phosphonylated thioamide 48 in good yield. This was then cyclised using a Mitsunobu procedure to give the chiral thiazoline phosphonate 49 in good yields under mild conditions. Homer-Wadsworth-Emmons reaction of these phosphonylated thiazolines gave chiral vinylic thiazolines 50 <00S1143>. [Pg.195]

Chiral tetrahydroisoquinoline derivatives can be obtained by diastereoselective or enatioselective protonation. Deprotonation of lactam 87 with n-BuLi followed by addition of H2O and NH4CI afforded 88 in 92% yield and 97% ee. The stereoselectivity was highly dependent upon the proton source. Further elaboration afforded tetrahydroisoquinoline 89 in >97% ee . The enantioselective protonation of 1-substituted tetrahydroisoquinoline 90 in the presence of chiral amine 91 proceeded in 90-95% yield and 83-86% ee. This methodology was used in an asymmetric synthesis of salsolidine <00SL1640>. [Pg.251]

Chiral amines can also be produced using aminotransferases, either by kinetic resolution of the racemic amine or by asymmetric synthesis from the corresponding prochiral ketone. The reaction involves the transfer of an amino group, a proton and two electrons from a primary amine to a ketone, and proceeds via an intermediate imine adduct. A variety of chiral amines can be obtained with high to very high ee-values. Several transformations have been developed and can be carried out on a 100-kg scale [94]. [Pg.1209]

Fig. 35.6 Synthesis of chiral amines by an improved procedure for making diphenylphosphinylimines, followed by asymmetric transfer hydrogenation. Fig. 35.6 Synthesis of chiral amines by an improved procedure for making diphenylphosphinylimines, followed by asymmetric transfer hydrogenation.
The synthesis of amines by the in-situ reductive amination of ketones is termed the Leuckart-Wallach reaction. Recently, an asymmetric transfer hydrogenation version of this reaction has been realized [85]. Whilst many catalysts tested give significant amounts of the alcohol, a few produced almost quantitative levels of the chiral amine, in high enantiomeric excess. [Pg.1234]

In contrast to the success in the synthesis of optically active amino acids and related compounds, only limited success has been achieved in the asymmetric synthesis of chiral amines or related compounds. One breakthrough is the asymmetric hydrogenation of arylenamides with Rh catalysts containing... [Pg.349]

A synthesis of novel chiral phosphine oxide aminal 113 has been developed by reacting phosphine oxide aldehyde 111 with diamine 112. The condensation gave a single diastereomer of the phosphine oxide aminal in 65% yield. This compound can be used as chiral auxiliary in asymmetric synthesis (Equation 15) <1996TA3431, 1996TL3051, 1996TL7465>. [Pg.59]

At that time, as now, the enantiomers of many chiral amines were obtained as natural products or by synthesis from naturally occurring amines, a-amino acids and alkaloids, while others were only prepared by introduction of an amino group by appropriate reactions into substances from the chiral pool carbohydrates, hydroxy acids, terpenes and alkaloids. In this connection, a recent review10 outlines the preparation of chiral aziridines from enantiomerically pure starting materials from natural or synthetic sources and the use of these aziridines in stereoselective transformations. Another report11 gives the use of the enantiomers of the a-amino acid esters for the asymmetric synthesis of nitrogen heterocyclic compounds. [Pg.106]

An early approach to the formation of chiral amines by nonenzymatic asymmetric synthesis was the reduction of prochiral ketoximes and their O-tetrahydropyranyl and O-methyl derivatives with lithium aluminum hydride-3-0-benzyl-1,2-0,0-cyclohexylidene-a-D-glucofuranose complex (16)33 in ether and prochiral ketoximes... [Pg.109]

A second example of the use of ionic chiral auxiliaries for asymmetric synthesis is found in the work of Chong et al. on the cis.trans photoisomerization of certain cyclopropane derivatives [33]. Based on the report by Zimmerman and Flechtner [34] that achiral tmns,trans-2,3-diphenyl-l-benzoylcyclopropane (35a, Scheme 7) undergoes very efficient (0=0.94) photoisomerization in solution to afford the racemic cis,trans isomer 36a, the correspondingp-carboxylic acid 35b was synthesized and treated with a variety of optically pure amines to give salts of general structure 35c (CA=chiral auxiliary). Irradiation of crystals of these salts followed by diazomethane workup yielded methyl ester 36d, which was analyzed by chiral HPLC for enantiomeric excess. The results are summarized in Table 3. [Pg.15]

The Catalysis Concept of Iminium Activation In 2000, the MacMillan laboratory disclosed a new strategy for asymmetric synthesis based on the capacity of chiral amines to function as enantioselective catalysts for a range of transformations that traditionally use Lewis acids. This catalytic concept was founded on the mechanistic postulate that the reversible formation of iminium ions from a,p-unsaturated aldehydes and amines [Eq. (11.10)] might emulate the equilibrium dynamics and 7i-orbital electronics that are inherent to Lewis acid catalysis [i.e., lowest unoccupied molecular orbital (LUMO)-lowering activation] [Eq. (11.9)] ... [Pg.319]


See other pages where Chiral amines asymmetric synthesis is mentioned: [Pg.530]    [Pg.241]    [Pg.365]    [Pg.4]    [Pg.161]    [Pg.79]    [Pg.233]    [Pg.265]    [Pg.309]    [Pg.53]    [Pg.229]    [Pg.265]    [Pg.712]    [Pg.350]    [Pg.106]    [Pg.107]    [Pg.112]    [Pg.11]    [Pg.13]    [Pg.145]    [Pg.6]    [Pg.14]    [Pg.27]    [Pg.28]    [Pg.131]    [Pg.136]    [Pg.150]    [Pg.239]   
See also in sourсe #XX -- [ Pg.722 ]




SEARCH



Amination asymmetric

Aminations asymmetric

Amines chirality

Amines synthesis

Asymmetric amines

Asymmetric chiral amines

Asymmetric chirality

Asymmetric hydrogenation chiral amine synthesis

Chiral aminals

Chiral amines

Chiral amines synthesis

Chiral asymmetric synthesis

Chiral synthesis

© 2024 chempedia.info