Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemicals molecular weight distribution

A factor in addition to the RTD and temperature distribution that affects the molecular weight distribution (MWD) is the nature of the chemical reaciion. If the period during which the molecule is growing is short compared with the residence time in the reactor, the MWD in a batch reactor is broader than in a CSTR. This situation holds for many free radical and ionic polymerization processes where the reaction intermediates are very short hved. In cases where the growth period is the same as the residence time in the reactor, the MWD is narrower in batch than in CSTR. Polymerizations that have no termination step—for instance, polycondensations—are of this type. This topic is treated by Denbigh (J. Applied Chem., 1, 227 [1951]). [Pg.2102]

Resin viscosity is an important property to consider in handling the resins. It depends on the molecular weight, molecular weight distribution, chemical constitution of the resin and presence of any modifiers or diluents. Since even the diglycidyl ethers are highly viscous materials with viscosities of about 40-100 poise at room temperature it will be appreciated that the handling of such viscous resins can present serious problems. [Pg.749]

However, other properties are very important in adhesive performance, such as the solubility, the compatibility, the chemical and thermal stability, the viscosity, and the molecular weight and molecular weight distribution. [Pg.612]

Viscosity. Solvent viscosity of resins is influenced by the concentration of resin, the softening point, the molecular weight distribution, the chemical composition of the resin, and the type of solvent. The higher the resin concentration, the higher the viscosity. For a given concentration, solution viscosity depends on the softening point of the resin (Fig. 22). [Pg.618]

Using IR spectroscopy and NMR, one can analyze the chemical structure of PA. The molecular weight and molecular weight distribution can be analyzed by endgroup analysis, viscometry, and high-pressure liquid chromatography (HPLC). The crystalline order can be analyzed by WAXS, small-angle X-ray spectroscopy... [Pg.160]

Some tailor-made homopolymers can serve as starting points for chemical modifications to yield new species. Poly(hydroxyethyl methacrylate) and poly(glyceryl methacrylate) 16), already mentioned, are obtained upon hydrolysis of the OH-protecting groups that allow the anionic polymerization to proceed. Another example is the acid hydrolysis of poly(t-butyl methacrylate), a reaction which proceeds easily to completion, yielding poly(methacrylic acid) of known degree of polymerization and narrow molecular weight distribution 44 45). [Pg.154]

The synthesis of well defined block copolymers exhibiting controlled molecular weight, low compositional heterogeneity and narrow molecular weight distribution is a major success of anionic polymerization techniques 6,7,14-111,112,113). Blocks of unlike chemical nature have a general tendency to undergo microphase separation, thereby producing mesomorphic phases. Block copolymers therefore exhibit unique properties, that prompted numerous studies and applications (e.g. thermoplastic elastomers). [Pg.164]

The properties of a polymer depend not only on its gross chemical composition but also on its molecular weight distribution, copolymer composition distribution, branch length distribution, and so on. The same monomer(s) can be converted to widely differing polymers depending on the polymerization mechanism and reactor type. This is an example of product by process, and no single product is best for all applications. Thus, there are several commercial varieties each of polyethylene, polystyrene, and polyvinyl chloride that are made by distinctly different processes. [Pg.492]

Reactive extrusion is the chemical modification of polymer while it is being transported in an extruder. In this work, polypropylene is intentionally degraded by the addition of a free radical initiator (a peroxide) during extrusion. The product has improved flow properties because of the removal of the high molecular weight tail and the narrowing of the molecular weight distribution. [Pg.507]

Polystyrene standards used were narrow molecular weight distribution sample produced by anionic polymerization and available from Pressure Chemical Co. Also sample NBS7C from the National Bureau of Standards was used. The sample of poly n-butyl methacrylate was obtained from Aldrich Chemical. It was produced by free radici polymerization with an Mw of 320,(XK) and an Mn of 73,500 (Cat. No. 18,153-6). [Pg.150]

Jackson, C. and Yau, W. W., Computer simulation study of multidetector size-exclusion chromatography. Flory-Schulz molecular weight distribution, in Chromatographic Characterization of Polymers, Hyphenated and Multidimensional Techniques, Provder, T., Barth, H. G., and Urban, M. W., Eds., American Chemical Society, Washington, D.C., 1995, chap. 6. [Pg.366]

Chemical structure of monomers and intermediates was confirmed by FT-IR and FT-NMR. Molecular weight distribution of polymers was assessed by GPC and intrinsic viscosity. The thermal property was examined by differential scanning calorimetry. The hydrolytic stability of the polymers was studied under in vitro conditions. With controlled drug delivery as one of the biomedical applications in mind, release studies of 5-fluorouracil and methotrexate from two of these polymers were also conducted. [Pg.142]

Compound Chemical formula Molecular weight Distribution coefficient -calc per 1E5 cm/s meas - per 1E5 cm/s... [Pg.444]


See other pages where Chemicals molecular weight distribution is mentioned: [Pg.559]    [Pg.139]    [Pg.316]    [Pg.206]    [Pg.153]    [Pg.269]    [Pg.372]    [Pg.180]    [Pg.498]    [Pg.227]    [Pg.317]    [Pg.327]    [Pg.478]    [Pg.352]    [Pg.356]    [Pg.510]    [Pg.75]    [Pg.558]    [Pg.299]    [Pg.635]    [Pg.15]    [Pg.86]    [Pg.112]    [Pg.73]    [Pg.285]    [Pg.17]    [Pg.66]    [Pg.317]    [Pg.318]    [Pg.207]    [Pg.146]    [Pg.13]    [Pg.257]    [Pg.722]    [Pg.267]    [Pg.394]    [Pg.407]    [Pg.32]   


SEARCH



Chemical composition and molecular weight distribution

Chemical distribution

Chemical weight

Distribution weight

Molecular distribution

Molecular weight distribution

© 2024 chempedia.info