Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemicals, biomass hydrocarbons

De, S., Saha, B., Luque, R., 2015. Hydrodeoxygenation processes advances on catalytic transformations of biomass-derived platform chemical into hydrocarbon fuels. Bioresource Technology 178, 108-118. [Pg.383]

An alternative method of produciag hydrocarbon fuels from biomass uses oils that are produced ia certaia plant seeds, such as rape seed, sunflowers, or oil palms, or from aquatic plants (see Soybeans and other oilseeds). Certain aquatic plants produce oils that can be extracted and upgraded to produce diesel fuel. The primary processiag requirement is to isolate the hydrocarbon portion of the carbon chain that closely matches diesel fuel and modify its combustion characteristics by chemical processiag. [Pg.238]

Alternatively, an entirely new downstream process and product chain, using renewable raw materials, can be conceived (the biorefinery ). The chemistry will be more focused on that of oxohydrocarbons (particularly carbohydrates) rather than hydrocarbons. Understanding the materials chemistry of biomass and related products would need to be enhanced. However, work has already been undertaken to identify the top sugar-derived intermediates (Figure 1.9) on which down-stream chemical processing might be derived. [Pg.15]

There is some similarity between the cracking of petroleum and the cracking of biomass. However, biomass is more complex chemically both in terms of structrual types and functional groups. In petrochemistry, hydrocarbons are fractionated and they are then functionalized by oxidation, halogenation, nitration and other chemical processes so as to add value. The commodity chemicals are then built up into more complex molecules using such popular synthetic methods as Friedel Craft reactions, Michael and aldol condensations, and Heck and Suzuki couplings. The speciality products of these reactions are then further elaborated into formulations for use in everyday applications ranging from personal care... [Pg.19]

Degradation is often the result of the combined effect of chemical transformation and biodegradation. For example, the oxidation/reduction of complex hydrocarbons can produce simple compounds such as peroxides, primary alcohols, and monocarbocylic acids. These compounds can then be further degraded by bacteria, leading to the formation of carbon dioxide, water, and new bacterial biomass.19-35... [Pg.704]

Numerous chemical intermediates are oxygen rich. Methanol, acetic acid and ethylene glycol show a O/C atomic ratio of 1, as does biomass. Other major chemicals intermediates show a lower O/C ratio, typically between 1/3 and 2/3. This holds for instance for propene and butene glycols, ethanol, (meth)acrylic acids, adipic acid and many others. The presence of some oxygen atoms is required to confer the desired physical and chemicals properties to the product. Selective and partial deoxygenation of biomass may represent an attractive and competitive route compared with the selective and partial oxidation of hydrocarbon feedstock. [Pg.28]

This chapter surveys different process options to convert terpenes, plant oils, carbohydrates and lignocellulosic materials into valuable chemicals and polymers. Three different strategies of conversion processes integrated in a biorefinery scheme are proposed from biomass to bioproducts via degraded molecules , from platform molecules to bioproducts , and from biomass to bioproducts via new synthesis routes . Selected examples representative of the three options are given. Attention is focused on conversions based on one-pot reactions involving one or several catalytic steps that could be used to replace conventional synthetic routes developed for hydrocarbons. [Pg.54]

Biomass, both from residues/wastes and dedicated crops, can be converted not only into bioenergy (electricity, heat) and biofuels for transport but also into bulk chemicals or materials that are nearly equivalent to, or sometimes even better than, those derived from fossil hydrocarbons. [Pg.394]

Polycyclic aromatic hydrocarbons (PAHs, sometimes also called polynuclear aromatics, PNA) are a hazardous class of widespread pollutants. The parent structures of the common PAHs are shown in Fig. 4 and the alkylated homologs are generally minor in combustion emissions. PAHs are produced by all natural combustion processes (e.g., wild fires) and from anthropogenic activity such as fossil fuels combustion, biomass burning, chemical manufacturing, petroleum refining, metallurgical processes, coal utilization, tar production, etc. [6,9,15,18, 20,24,131-139]. [Pg.14]

The chemistry of chlorine, as well as other halogens, plays an important role in combustion and in a number of industrial processes. The reactions of chorine and chlorinated hydrocarbons are important in incineration of hazardous chemical wastes, which frequently contain these compounds. Also fuels such as biomass may contain significant amounts of chlorine. In biomass combustion, chlorine interacts with sulfur and alkali metals, a chemistry that has considerable implications for aerosol formation, deposit formation, and corrosion but is rather poorly understood. [Pg.612]


See other pages where Chemicals, biomass hydrocarbons is mentioned: [Pg.1013]    [Pg.163]    [Pg.25]    [Pg.671]    [Pg.14]    [Pg.19]    [Pg.366]    [Pg.238]    [Pg.418]    [Pg.652]    [Pg.653]    [Pg.263]    [Pg.15]    [Pg.20]    [Pg.263]    [Pg.9]    [Pg.188]    [Pg.191]    [Pg.284]    [Pg.290]    [Pg.486]    [Pg.55]    [Pg.55]    [Pg.57]    [Pg.71]    [Pg.147]    [Pg.63]    [Pg.623]    [Pg.80]    [Pg.2]    [Pg.12]    [Pg.186]    [Pg.13]    [Pg.14]    [Pg.18]    [Pg.443]    [Pg.584]    [Pg.657]    [Pg.14]    [Pg.19]   
See also in sourсe #XX -- [ Pg.351 ]




SEARCH



Chemical hydrocarbons

Chemicals) biomass

© 2024 chempedia.info