Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical vapor deposition, modeling pressures

For many applications, like chemical-vapor-deposition reactors, the semi-infinite outer flow is not an appropriate model. Reactors are often designed so that the incoming flow issues through a physical manifold that is parallel to the stagnation surface and separated by a fixed distance. Typically the manifolds (also called showerheads) are designed so that the axial velocity u is uniform, that is, independent of the radial position. Moreover, since the manifold is a solid material, the radial velocity at the manifold face is zero, due to the no-slip condition. One way to fabricate a showerhead manifold is to drill many small holes in a plate, thus causing a large pressure drop across the manifold relative to the pressure variations in the plenum upstream of the manifold and the reactor downstream of the manifold. A porous metal or ceramic plate would provide another way to fabricate the manifold. [Pg.267]

Chemical vapor deposition (CVD) of thin solid films from gaseous reactants is reviewed. General process considerations such as film thickness, uniformity, and structure are discussed, along with chemical vapor deposition reactor systems. Fundamental issues related to nucleation, thermodynamics, gas-phase chemistry, and surface chemistry are reviewed. Transport phenomena in low-pressure and atmospheric-pressure chemical vapor deposition systems are described and compared with those in other chemically reacting systems. Finally, modeling approaches to the different types of chemical vapor deposition reactors are outlined and illustrated with examples. [Pg.209]

Chemical vapor deposition and heterogeneous catalysis share many kinetic and transport features, but CVD reactor design lags the corresponding catalytic reactor analysis both in level of sophistication and in scope. In the following we review the state of CVD reactor modelling and demonstrate how catalytic reactor design concepts may be applied to CVD processes. This is illustrated with an example where fixed bed reactor concepts are used to describe a commercial "multiple-wafers-in-tube" low pressure CVD reactor. [Pg.196]

Kalidindi SR, Desu SB (1990) Analytical model for the low pressure chemical vapor deposition of Si02 from tetraethoxysilane. JElectrochem Socl37 624-628... [Pg.211]

Since no synthetic chemistiy infrastructure was available at the Department (or, indeed, the Institute) before 2008, polyciystalline samples of catalysts had to be obtained from external, often industrial, partners. In order to produce model systems in house, researchers in the Department of Inorganic Chemistry developed a suite of instruments allowing the synthesis of metal oxides by physical vapor deposition of elements and by annealing procedures at ambient pressure. They chose the dehydrogenation of ethylbenzene to styrene on iron oxides as the subject of their first major study. Figure 6.6 summarizes the main results. The technical catalyst (A) is a complex convolution of phases, with the active sites located at the solid-solid interface. It was possible to synthesize well-ordered thin films (D) of the relevant ternary potassium iron oxide and to determine their chemical structure and reactivity. In parallel. Department members developed a micro-reactor device (B) allowing them to measure kinetic data (C) on such thin films. In this way, they were able to obtain experimental data needed for kinetic modeling under well-defined reaction conditions, which they could use to prove that the model reaction occurs in the same way as the reaction in the real-life system. Thin oxide... [Pg.243]


See other pages where Chemical vapor deposition, modeling pressures is mentioned: [Pg.7]    [Pg.732]    [Pg.824]    [Pg.12]    [Pg.194]    [Pg.30]    [Pg.480]    [Pg.372]    [Pg.422]    [Pg.4]    [Pg.245]    [Pg.222]    [Pg.452]    [Pg.118]    [Pg.47]    [Pg.471]    [Pg.2040]    [Pg.469]    [Pg.290]    [Pg.218]    [Pg.582]    [Pg.140]    [Pg.223]    [Pg.363]   


SEARCH



Chemical pressure

Chemical vapor deposition

Chemical vapor deposition, modeling

Pressure modelling

Vapor modeling

© 2024 chempedia.info