Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactivity relationships

Quantitative structure-chemical reactivity relationships (QSRR). Chemical reactivities involve the formation and/or cleavage of chemical bonds. Examples of chemical reactivity data are equilibrium constants, rate constants, polarographic half wave potentials and oxidation-reduction potentials. [Pg.685]

Alkaline hydrolysis and structure chemical reactivity relationships... [Pg.165]

In this section, we illustrate the applicability of the model to some important special cases, and summarize the relationship between aromaticity and chemical reactivity, expressed in the properties of transition states. [Pg.341]

The reaction of an alcohol with a hydrogen halide is a substitution A halogen usually chlorine or bromine replaces a hydroxyl group as a substituent on carbon Calling the reaction a substitution tells us the relationship between the organic reactant and its prod uct but does not reveal the mechanism In developing a mechanistic picture for a par ticular reaction we combine some basic principles of chemical reactivity with experi mental observations to deduce the most likely sequence of steps... [Pg.153]

Example 2.1 illustrates the relationship among chemical reactivity, equivalent weight, and normality. [Pg.17]

Entrapment of biochemically reactive molecules into conductive polymer substrates is being used to develop electrochemical biosensors (212). This has proven especially useful for the incorporation of enzymes that retain their specific chemical reactivity. Electropolymerization of pyrrole in an aqueous solution containing glucose oxidase (GO) leads to a polypyrrole in which the GO enzyme is co-deposited with the polymer. These polymer-entrapped GO electrodes have been used as glucose sensors. A direct relationship is seen between the electrode response and the glucose concentration in the solution which was analyzed with a typical measurement taking between 20 to 40 s. [Pg.45]

After an introductory chapter, phenomenological kinetics is treated in Chapters 2, 3, and 4. The theory of chemical kinetics, in the form most applicable to solution studies, is described in Chapter 5 and is used in subsequent chapters. The treatments of mechanistic interpretations of the transition state theory, structure-reactivity relationships, and solvent effects are more extensive than is usual in an introductory textbook. The book could serve as the basis of a one-semester course, and I hope that it also may be found useful for self-instruction. [Pg.487]

In the benzene series, an approximately linear relationship has been obtained between the chemical shifts of the para-hydrogen in substituted benzenes and Hammett s a-values of the substituents. Attempts have been made, especially by Taft, ° to use the chemical shifts as a quantitative characteristic of the substituent. It is more difficult to correlate the chemical shifts of thiophenes with chemical reactivity data since few quantitative chemical data are available (cf. Section VI,A). Comparing the chemical shifts of the 5-hydrogen in 2-substituted thiophenes and the parahydrogens in substituted benzenes, it is evident that although —I—M-substituents cause similar shifts, large differences are obtained for -j-M-substituents indicating that such substituents may have different effects on the reactivity of the two aromatic systems in question. Differences also... [Pg.10]

Applications of neural networks are becoming more diverse in chemistry [31-40]. Some typical applications include predicting chemical reactivity, acid strength in oxides, protein structure determination, quantitative structure property relationship (QSPR), fluid property relationships, classification of molecular spectra, group contribution, spectroscopy analysis, etc. The results reported in these areas are very encouraging and are demonstrative of the wide spectrum of applications and interest in this area. [Pg.10]

Anti periplanar geometry for E2 reactions is particularly important in cyclohexane rings, where chair geometry forces a rigid relationship between the substituents on neighboring carbon atoms (Section 4.8). As pointed out by Derek Barton in a landmark 1950 paper, much of the chemical reactivity of substituted cyclohexanes is controlled by their conformation. Let s look at the E2 dehydro-halogenation of chlorocyclohexanes to see an example. [Pg.389]

Within the context of this book the quantitative relationships between structure and chemical reactivity are very informative. One of the early postulates of Ingold and his school in the 1930s (review see Ingold, 1969, p. 78) was that the electronic effects of substituents are composed of two main parts a field/inductive component and a mesomeric component. Hammett s work indicated clearly from the beginning that his substituent constants am and crp reflect Ingold s postulate in numerical terms. In particular, many observations indicated that the /7-substituent constant ap is the sum of a field/inductive component 0 and a resonance (mesomeric) component (Jr. [Pg.149]

In order to consider the relationship between potential surfaces and chemical reactivity we start by reviewing the relevant concepts. To do this we examine the reaction... [Pg.40]

A fundament of the quantum chemical standpoint is that structure and reactivity are correlated. When using quantum chemical reactivity parameters for quantifying relationships between structure and reactivity one has the advantage of being able to describe the nature of the structural influences in a direct manner, without empirical assumptions. This is especially valid for the so-called Salem-Klopman equation. It allows the differentiation between the charge and the orbital controlled portions of the interaction between reactants. This was shown by the investigation of the interaction between the Lewis acid with complex counterions 18> (see part 4.4). [Pg.194]

Chemically reactive elements should have a short residence time in seawater and a low concentration. A positive correlation exists between the mean ocean residence time and the mean oceanic concentration however, the scatter is too great for the plot to be used for predictive purposes. Whitfield and Turner (1979) and Whitfield (1979) have shown that a more important correlation exists between residence time and a measure of the partitioning of the elements between the ocean and crustal rocks. The rationale behind this approach is that the oceanic concentrations have been roughly constant, while the elements in crustal rocks have cycled through the oceans. This partitioning of the elements may reflect the long-term chemical controls. The relationship can be summarized by an equation of the form... [Pg.258]

A linear relationship of free energies is extrathermodynamic, and such a correlation is hardly a theoretical corollary which directly results from the axioms of thermodynamics alone. However, the slope of the straight line and departures from linearity can often suggest something physically meaningful concerning the chemical reactivity, as seen in Fig. 2. [Pg.198]

Since we are interested in evaluating structure-activity relationships (see Sect. 2.2), it is important to combine several analytical methods to allow a characterization at a molecular level for example, elemental analysis, IR, and advanced NMR spectroscopies, EXAFS and chemical reactivity studies. [Pg.169]

Having all the essential building blocks of the DeNO, mechanism well established and verified spectroscopically, quantum chemical modeling may be then used for providing a molecular rational for the observed structure-reactivity relationships. The first mechanistic cycle of the DeNO reaction, where NO reacting with Cu Z center is transformed into N20, involves the following steps ... [Pg.58]


See other pages where Chemical reactivity relationships is mentioned: [Pg.2424]    [Pg.96]    [Pg.105]    [Pg.7]    [Pg.161]    [Pg.254]    [Pg.18]    [Pg.416]    [Pg.42]    [Pg.514]    [Pg.521]    [Pg.39]    [Pg.244]    [Pg.318]    [Pg.469]    [Pg.514]    [Pg.521]    [Pg.298]    [Pg.184]   
See also in sourсe #XX -- [ Pg.555 ]




SEARCH



In Catalytic Materials: Relationship Between Structure and Reactivity Whyte ACS Symposium Series American Chemical Society: Washington

Quantitative structure-activity relationship chemical reactivity

Quantitative structure-chemical reactivity relationships

© 2024 chempedia.info