Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions product formation control

Mechanistic studies of homogenous chemical reactions involving formation of (P)Rh(R) from (P)Rh and RX demonstrate a radical pathway(9). These studies were carried out under different experimental conditions from those in the electrosynthesis. Thus, the difference between the proposed mechanism using chemical and electrochemical synthetic methods may be due to differences related to the particular investigated alkyl halides in the two different studies or alternatively to the different reaction conditions between the two sets of experiments. However, it should be noted that the electrochemical method for generating the reactive species is under conditions which allow for a greater selectivity and control of the reaction products. [Pg.456]

The simplest example of a chemical reaction with rate-controlling step is the pathway 4.1 with very different rate coefficients of the two steps. Solving the rate equations for A, K, and P in a constant-volume batch reaction with only A present at start and without assumptions about the rate coefficients, one obtains for the rate of product formation ... [Pg.64]

Tannor D J and Rice S A 1988 Coherent pulse sequence control of product formation in chemical reactions Adv. Chem. Rhys. 70 441 -524... [Pg.279]

In the presence of a metal ion (M " ), a metal chalcogenide phase M2Sen will be precipitated upon exceeding the solubility product of [M and [Se ] (or [HSe ]). The concentration of free metal ions must be controlled by an excess of complexing agent, determining the applicable solubility of the metal and the overall competitive chemical reaction, in order to prevent the formation of sulfite, sulfate, and... [Pg.81]

Approximation refers to the bringing together of the substrate molecules and reactive functionalities of the enzyme active site into the required proximity and orientation for rapid reaction. Consider the reaction of two molecules, A and B, to form a covalent product A-B. For this reaction to occur in solution, the two molecules would need to encounter each other through diffusion-controlled collisions. The rate of collision is dependent on the temperature of the solution and molar concentrations of reactants. The physiological conditions that support human life, however, do not allow for significant variations in temperature or molarity of substrates. For a collision to lead to bond formation, the two molecules would need to encounter one another in a precise orientation to effect the molecular orbitial distortions necessary for transition state attainment. The chemical reaction would also require... [Pg.27]

In parallel with improvements in chemical sensor performance, analytical science has also seen tremendous advances in the development of compact, portable analytical instruments. For example, lab-on-a-chip (LOAC) devices enable complex bench processes (sampling, reagent addition, temperature control, analysis of reaction products) to be incorporated into a compact, device format that can provide reliable analytical information within a controlled internal environment. LOAC devices typically incorporate pumps, valves, micromachined flow manifolds, reagents, sampling system, electronics and data processing, and communications. Clearly, they are much more complex than the simple chemo-sensor described above. In fact, chemosensors can be incorporated into LOAC devices as a selective sensor, which enables the sensor to be contained within the protective internal environment. Figure 5... [Pg.127]

Zeolite catalysts play a vital role in modern industrial catalysis. The varied acidity and microporosity properties of this class of inorganic oxides allow them to be applied to a wide variety of commercially important industrial processes. The acid sites of zeolites and other acidic molecular sieves are easier to manipulate than those of other solid acid catalysts by controlling material properties, such as the framework Si/Al ratio or level of cation exchange. The uniform pore size of the crystalline framework provides a consistent environment that improves the selectivity of the acid-catalyzed transformations that form C-C bonds. The zeoHte structure can also inhibit the formation of heavy coke molecules (such as medium-pore MFl in the Cyclar process or MTG process) or the desorption of undesired large by-products (such as small-pore SAPO-34 in MTO). While faujasite, morden-ite, beta and MFl remain the most widely used zeolite structures for industrial applications, the past decade has seen new structures, such as SAPO-34 and MWW, provide improved performance in specific applications. It is clear that the continued search for more active, selective and stable catalysts for industrially important chemical reactions will include the synthesis and application of new zeolite materials. [Pg.528]

Thus, thioarylation may be facilitated electrochemically. The conventional nucleophilic substitution of the phenylthio gronp for bromine in 4-bromobenzophenone requires extremely rigid conditions. When a difference in electric potentials is set up, the reaction proceeds readily and gives products in a high yield (80%). It is sufficient to set up only the potential difference necessary to ensure the formation of the substrate anion-radical (with the potential and current strictly controlled). The chemical reaction takes place in the bulk of solution and yields 4-(phenylthio)benzophenone (Pinson and Saveant 1974) (Scheme 5.1). [Pg.274]

Other than in polymer matrix composites, the chemical reaction between elements of constituents takes place in different ways. Reaction occurs to form a new compound(s) at the interface region in MMCs, particularly those manufactured by a molten metal infiltration process. Reaction involves transfer of atoms from one or both of the constituents to the reaction site near the interface and these transfer processes are diffusion controlled. Depending on the composite constituents, the atoms of the fiber surface diffuse through the reaction site, (for example, in the boron fiber-titanium matrix system, this causes a significant volume contraction due to void formation in the center of the fiber or at the fiber-compound interface (Blackburn et al., 1966)), or the matrix atoms diffuse through the reaction product. Continued reaction to form a new compound at the interface region is generally harmful to the mechanical properties of composites. [Pg.14]


See other pages where Chemical reactions product formation control is mentioned: [Pg.383]    [Pg.383]    [Pg.237]    [Pg.235]    [Pg.269]    [Pg.458]    [Pg.1]    [Pg.359]    [Pg.51]    [Pg.173]    [Pg.247]    [Pg.255]    [Pg.3]    [Pg.310]    [Pg.739]    [Pg.722]    [Pg.219]    [Pg.325]    [Pg.71]    [Pg.32]    [Pg.15]    [Pg.11]    [Pg.229]    [Pg.1109]    [Pg.7]    [Pg.401]    [Pg.204]    [Pg.99]    [Pg.371]    [Pg.243]    [Pg.383]    [Pg.194]    [Pg.35]    [Pg.736]    [Pg.145]    [Pg.145]    [Pg.83]    [Pg.115]    [Pg.214]   
See also in sourсe #XX -- [ Pg.442 ]




SEARCH



Chemical-controlled reaction

Chemically controlled

Control chemical reaction

Formate production

Product control

Product controlling

Production controls

Reaction product formation

© 2024 chempedia.info