Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reaction temperature effect

It is important for all sample custodians to maintain the sample in its original physical and chemical condition so that it remains representative of the bulk system in terms of the analyte identity and concentration. Possible changes to avoid are 1) loss of sample matrix or solvent through evaporation or other means, 2) loss of analyte through evaporation, chemical reaction, temperature effects, bacterial... [Pg.21]

Disulfide bonds between proteins have an energy of 49 kcal/mole and are not broken at room temperature except as the result of a chemical reaction. The effects of oxidizing agents on the rheological properties of dough... [Pg.230]

Generally, in chemical reactions, the effect of solution nonidealities on the enthalpy is small compared with the very much larger heats of reaction. Therefore, as an approximation, the partial molar enthalpies can be replaced by the pure-component enthalpies. Also, for simplicity, we will assume that the temperatures of the streams entering and leaving the fermenter are the same. (This may not be exactly true, but this effect will also be small compared with the heat of reaction, and could easily be included, if needed.) Finally, unless the solution is very viscous, the energy input from stirring is small compared with the heat of reaction. Therefore, we will also neglect the work term W., ... [Pg.892]

Finally, it should be noted that the highest conversion that can be achieved in reversible reactions is the equilibrium conversion (which takes an infinite period of time to achieve). For endothermic (heat absorbed) reactions, the equilibrium conversion increases with increasing temperature up to a maximum of 1.0 for exothermic (heat liberated) reactions the equilibrium conversion decreases with increasing temperature. The reader is cautioned that these equilibrium concentration calculations are, for most intents and purposes, a set of fake or artificial values. They almost always represent an upper limit on the expected concentration at the temperature in question. Other chemical reactions, kinetic effects, and temperature variations in the system may render these calculations valueless. Nonetheless, these calculations serve a useful purpose since they do provide a reasonable estimate of these concentrations. [Pg.91]

Sonochemistry is strongly affected by a variety of external variables, including acoustic frequency, acoustic intensity, bulk temperature, static pressure, ambient gas, and solvent (47). These are the important parameters which need consideration in the effective appHcation of ultrasound to chemical reactions. The origin of these influences is easily understood in terms of the hot-spot mechanism of sonochemistry. [Pg.262]

During the nineteenth century the growth of thermodynamics and the development of the kinetic theory marked the beginning of an era in which the physical sciences were given a quantitative foundation. In the laboratory, extensive researches were carried out to determine the effects of pressure and temperature on the rates of chemical reactions and to measure the physical properties of matter. Work on the critical properties of carbon dioxide and on the continuity of state by van der Waals provided the stimulus for accurate measurements on the compressibiUty of gases and Hquids at what, in 1885, was a surprisingly high pressure of 300 MPa (- 3,000 atmor 43,500 psi). This pressure was not exceeded until about 1912. [Pg.76]

Computer Models, The actual residence time for waste destmction can be quite different from the superficial value calculated by dividing the chamber volume by the volumetric flow rate. The large activation energies for chemical reaction, and the sensitivity of reaction rates to oxidant concentration, mean that the presence of cold spots or oxidant deficient zones render such subvolumes ineffective. Poor flow patterns, ie, dead zones and bypassing, can also contribute to loss of effective volume. The tools of computational fluid dynamics (qv) are useful in assessing the extent to which the actual profiles of velocity, temperature, and oxidant concentration deviate from the ideal (40). [Pg.57]

Heat. As expected, heat accelerates oxidation (33). Therefore, the effects described previously are observed sooner and are more severe as temperature is increased. Because oxidation is a chemical reaction, an increase of 10°C in temperature almost doubles the rate of oxidation. [Pg.246]

The coordinates of thermodynamics do not include time, ie, thermodynamics does not predict rates at which processes take place. It is concerned with equihbrium states and with the effects of temperature, pressure, and composition changes on such states. For example, the equiUbrium yield of a chemical reaction can be calculated for given T and P, but not the time required to approach the equihbrium state. It is however tme that the rate at which a system approaches equihbrium depends directly on its displacement from equihbrium. One can therefore imagine a limiting kind of process that occurs at an infinitesimal rate by virtue of never being displaced more than differentially from its equihbrium state. Such a process may be reversed in direction at any time by an infinitesimal change in external conditions, and is therefore said to be reversible. A system undergoing a reversible process traverses equihbrium states characterized by the thermodynamic coordinates. [Pg.481]

To analy2e premixed turbulent flames theoretically, two processes should be considered (/) the effects of combustion on the turbulence, and (2) the effects of turbulence on the average chemical reaction rates. In a turbulent flame, the peak time-averaged reaction rate can be orders of magnitude smaller than the corresponding rates in a laminar flame. The reason for this is the existence of turbulence-induced fluctuations in composition, temperature, density, and heat release rate within the flame, which are caused by large eddy stmctures and wrinkled laminar flame fronts. [Pg.518]

Most theories of droplet combustion assume a spherical, symmetrical droplet surrounded by a spherical flame, for which the radii of the droplet and the flame are denoted by and respectively. The flame is supported by the fuel diffusing from the droplet surface and the oxidant from the outside. The heat produced in the combustion zone ensures evaporation of the droplet and consequently the fuel supply. Other assumptions that further restrict the model include (/) the rate of chemical reaction is much higher than the rate of diffusion and hence the reaction is completed in a flame front of infinitesimal thickness (2) the droplet is made up of pure Hquid fuel (J) the composition of the ambient atmosphere far away from the droplet is constant and does not depend on the combustion process (4) combustion occurs under steady-state conditions (5) the surface temperature of the droplet is close or equal to the boiling point of the Hquid and (6) the effects of radiation, thermodiffusion, and radial pressure changes are negligible. [Pg.520]

For many laboratoiy studies, a suitable reactor is a cell with independent agitation of each phase and an undisturbed interface of known area, like the item shown in Fig. 23-29d, Whether a rate process is controlled by a mass-transfer rate or a chemical reaction rate sometimes can be identified by simple parameters. When agitation is sufficient to produce a homogeneous dispersion and the rate varies with further increases of agitation, mass-transfer rates are likely to be significant. The effect of change in temperature is a major criterion-, a rise of 10°C (18°F) normally raises the rate of a chemical reaction by a factor of 2 to 3, but the mass-transfer rate by much less. There may be instances, however, where the combined effect on chemical equilibrium, diffusivity, viscosity, and surface tension also may give a comparable enhancement. [Pg.2116]

Reactive Chemicals Reviews The process chemistry is reviewed for evidence of exotherms, shock sensitivity, and other insta-bihty, with emphasis on possible exothermic reactions. It is especially important to consider pressure effects— Pressure blows up people, not temperature The pumose of this review is to prevent unexpected and uncontrolled chemical reactions. Reviewers should be knowledgeable people in the field of reactive chemicals and include people from loss prevention, manufacturing, and research. [Pg.2271]


See other pages where Chemical reaction temperature effect is mentioned: [Pg.1359]    [Pg.1182]    [Pg.1363]    [Pg.1359]    [Pg.1182]    [Pg.1363]    [Pg.27]    [Pg.362]    [Pg.194]    [Pg.92]    [Pg.399]    [Pg.69]    [Pg.753]    [Pg.47]    [Pg.41]    [Pg.843]    [Pg.2115]    [Pg.18]    [Pg.435]    [Pg.88]    [Pg.249]    [Pg.256]    [Pg.262]    [Pg.33]    [Pg.266]    [Pg.481]    [Pg.511]    [Pg.198]    [Pg.116]    [Pg.249]    [Pg.411]    [Pg.421]    [Pg.3]    [Pg.481]    [Pg.482]    [Pg.530]    [Pg.312]    [Pg.518]    [Pg.303]    [Pg.252]    [Pg.1878]   
See also in sourсe #XX -- [ Pg.363 , Pg.612 , Pg.613 ]




SEARCH



Chemical reactions, effect

Rates, chemical reactions temperature effects

Reactions temperature effect

Temperature chemical

Temperature effects high pressure chemical reactions

Temperature effects very high pressure chemical reactions, carbon

The Effect of Temperature on Chemical Reaction Equilibrium

© 2024 chempedia.info