Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature effects high pressure chemical reactions

High-temperature reactants that can absorb C02 at elevated temperatures in a chemical reaction offer another way to avoid the energy penalties that are associated with creating low operating temperatures or high pressures in the absorption step. In such a system, the heat of absorption is delivered at a temperature that makes it economically attractive. A successful implementation of the injection of reaction-based sorbents will, therefore, require the incorporation of effective process integration schemes to minimize the parasitic... [Pg.574]

With the technical development achieved in the last 30 years, pressure has become a common variable in several chemical and biochemical laboratories. In addition to temperature, concentration, pH, solvent, ionic strength, etc., it helps provide a better understanding of structures and reactions in chemical, biochemical, catalytic-mechanistic studies and industrial applications. Two of the first industrial examples of the effect of pressure on reactions are the Haber process for the synthesis of ammonia and the conversion of carbon to diamond. The production of NH3 and synthetic diamonds illustrate completely different fields of use of high pressures the first application concerns reactions involving pressurized gases and the second deals with the effect of very high hydrostatic pressure on chemical reactions. High pressure analytical techniques have been developed for the majority of the physicochemical methods (spectroscopies e. g. NMR, IR, UV-visible and electrochemistry, flow methods, etc.). [Pg.81]

Pressure is a fundamental physical property that affects various thermodynamic and kinetic parameters. Pressure dependence studies of a process reveal information about the volume profile of a process in much the same way as temperature dependence studies illuminate the energetics of the process (83). Since chemical transformations in SCF media require relatively high operating pressures, pressure effects on chemical equilibria and rates of reactions must be considered in evaluating SCF reaction processes (83-85). The most pronounced effect of pressure on reactions in the SCF region has been attributed to the thermodynamic pressure effect on the reaction rate constant (86), and control of this pressure dependency has been cited as one means of selecting between parallel reaction pathways (87). This pressure effect can be conveniently evaluated within the thermodynamic framework provided by transition state theory, which has often been applied to reactions in solutions (31,84,88-90). This theory assumes a true chemical equilibrium between the reactants and an activated transition... [Pg.104]

Only in recent years has the accuracy, reliability and the efficiency of ab initio calculations allowed us to study complex materials for which detailed experimental characterization is missing. In the real world, many important chemical reactions take place under high temperature and high pressure conditions. Ab initio calculations have traditionally been thought of as zero-temperature, zero-pressure techniques, however they can be combined with atomistic thermodynamics to include the effects of finite temperatures and pressures. This allows predictive modelling of surface composition and structure under realistic conditions. [Pg.176]

During the nineteenth century the growth of thermodynamics and the development of the kinetic theory marked the beginning of an era in which the physical sciences were given a quantitative foundation. In the laboratory, extensive researches were carried out to determine the effects of pressure and temperature on the rates of chemical reactions and to measure the physical properties of matter. Work on the critical properties of carbon dioxide and on the continuity of state by van der Waals provided the stimulus for accurate measurements on the compressibiUty of gases and Hquids at what, in 1885, was a surprisingly high pressure of 300 MPa (- 3,000 atmor 43,500 psi). This pressure was not exceeded until about 1912. [Pg.76]

These pioneers understood the interplay between chemical equiUbrium and reaction kinetics indeed, Haber s research, motivated by the development of a commercial process, helped to spur the development of the principles of physical chemistry that account for the effects of temperature and pressure on chemical equiUbrium and kinetics. The ammonia synthesis reaction is strongly equiUbrium limited. The equiUbrium conversion to ammonia is favored by high pressure and low temperature. Haber therefore recognized that the key to a successful process for making ammonia from hydrogen and nitrogen was a catalyst with a high activity to allow operation at low temperatures where the equiUbrium is relatively favorable. [Pg.161]

Adiabatic Reaction Temperature (T ). The concept of adiabatic or theoretical reaction temperature (T j) plays an important role in the design of chemical reactors, gas furnaces, and other process equipment to handle highly exothermic reactions such as combustion. T is defined as the final temperature attained by the reaction mixture at the completion of a chemical reaction carried out under adiabatic conditions in a closed system at constant pressure. Theoretically, this is the maximum temperature achieved by the products when stoichiometric quantities of reactants are completely converted into products in an adiabatic reactor. In general, T is a function of the initial temperature (T) of the reactants and their relative amounts as well as the presence of any nonreactive (inert) materials. T is also dependent on the extent of completion of the reaction. In actual experiments, it is very unlikely that the theoretical maximum values of T can be realized, but the calculated results do provide an idealized basis for comparison of the thermal effects resulting from exothermic reactions. Lower feed temperatures (T), presence of inerts and excess reactants, and incomplete conversion tend to reduce the value of T. The term theoretical or adiabatic flame temperature (T,, ) is preferred over T in dealing exclusively with the combustion of fuels. [Pg.359]

Corrosive wear results from a chemical reaction of the wear surface with the environment. In this section, only corrosion that occurs in conjunction with mechanical wear is considered. Purely corrosive wear is reviewed in Sec. 4.0 below. The chemical resistance of a given coating material must be assessed if the application involves a corrosive environment. A typical example is the environment found in deep oil and gas wells (over 500 m.), which usually contain significant concentrations of CO2, H2S, and chlorides. The corrosive effect of these chemicals is enhanced by the high temperature and pressure found at these great depths. [Pg.429]

The heat of decomposition (238.4 kJ/mol, 3.92 kJ/g) has been calculated to give an adiabatic product temperature of 2150°C accompanied by a 24-fold pressure increase in a closed vessel [9], Dining research into the Friedel-Crafts acylation reaction of aromatic compounds (components unspecified) in nitrobenzene as solvent, it was decided to use nitromethane in place of nitrobenzene because of the lower toxicity of the former. However, because of the lower boiling point of nitromethane (101°C, against 210°C for nitrobenzene), the reactions were run in an autoclave so that the same maximum reaction temperature of 155°C could be used, but at a maximum pressure of 10 bar. The reaction mixture was heated to 150°C and maintained there for 10 minutes, when a rapidly accelerating increase in temperature was noticed, and at 160°C the lid of the autoclave was blown off as decomposition accelerated to explosion [10], Impurities present in the commercial solvent are listed, and a recommended purification procedure is described [11]. The thermal decomposition of nitromethane under supercritical conditions has been studied [12], The effects of very high pressure and of temperature on the physical properties, chemical reactivity and thermal decomposition of nitromethane have been studied, and a mechanism for the bimolecular decomposition (to ammonium formate and water) identified [13], Solid nitromethane apparently has different susceptibility to detonation according to the orientation of the crystal, a theoretical model is advanced [14], Nitromethane actually finds employment as an explosive [15],... [Pg.183]


See other pages where Temperature effects high pressure chemical reactions is mentioned: [Pg.16]    [Pg.222]    [Pg.289]    [Pg.280]    [Pg.12]    [Pg.555]    [Pg.459]    [Pg.794]    [Pg.287]    [Pg.315]    [Pg.451]    [Pg.249]    [Pg.266]    [Pg.98]    [Pg.203]    [Pg.562]    [Pg.60]    [Pg.54]    [Pg.732]    [Pg.75]    [Pg.374]    [Pg.98]    [Pg.18]    [Pg.36]    [Pg.152]    [Pg.181]    [Pg.314]    [Pg.100]    [Pg.99]    [Pg.106]    [Pg.114]    [Pg.181]    [Pg.217]    [Pg.204]    [Pg.19]    [Pg.113]    [Pg.13]    [Pg.60]    [Pg.160]    [Pg.580]    [Pg.692]   
See also in sourсe #XX -- [ Pg.106 , Pg.107 , Pg.108 , Pg.109 , Pg.110 ]




SEARCH



Chemical high pressure

Chemical pressure

Chemical reaction temperature effect

Chemical reactions, effect

High pressure effects

High pressure effects effect

High pressure reactions

High reactions

High-temperature effect

High-temperature reaction

Pressure effects reaction

Reactions temperature effect

Temperature chemical

Temperature effects very high pressure chemical reactions, carbon

© 2024 chempedia.info