Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Empirical chemical kinetics

Rate effects may not be chemical kinetic ones. Benson and co-worker [84], in a study of the rate of adsorption of water on lyophilized proteins, comment that the empirical rates of adsorption were very markedly complicated by the fact that the samples were appreciably heated by the heat evolved on adsorption. In fact, it appeared that the actual adsorption rates were very fast and that the time dependence of the adsorbate pressure above the adsorbent was simply due to the time variation of the temperature of the sample as it cooled after the initial heating when adsorbate was first introduced. [Pg.661]

When comparing Eq. (67) with the empirical Arrhenius equation for chemical kinetics... [Pg.110]

In chemical kinetics an empirical relationship is used to relate the overall rate of a process to the concentrations of various reactants. A common form for this expression is... [Pg.96]

Many approaches have been used to correlate solvent effects. The approach used most often is based on the electrostatic theory, the theoretical development of which has been described in detail by Amis [114]. The reaction rate is correlated with some bulk parameter of the solvent, such as the dielectric constant or its various algebraic functions. The search for empirical parameters of solvent polarity and their applications in multiparameter equations has recently been intensified, and this approach is described in the book by Reich-ardt [115] and more recently in the chapter on medium effects in Connor s text on chemical kinetics [110]. [Pg.164]

Chemical engineers have traditionally approached kinetics studies with the goal of describing the behavior of reacting systems in terms of macroscopically observable quantities such as temperature, pressure, composition, and Reynolds number. This empirical approach has been very fruitful in that it has permitted chemical reactor technology to develop to a point that far surpasses the development of theoretical work in chemical kinetics. [Pg.1]

In the design of an industrial scale reactor for a new process, or an old one that employs a new catalyst, it is common practice to carry out both bench and pilot plant studies before finalizing the design of the commercial scale reactor. The bench scale studies yield the best information about the intrinsic chemical kinetics and the associated rate expression. However, when taken alone, they force the chemical engineer to rely on standard empirical correlations and prediction methods in order to determine the possible influence of heat and mass transfer processes on the rates that will be observed in industrial scale equipment. The pilot scale studies can provide a test of the applicability of the correlations and an indication of potential limitations that physical processes may place on conversion rates. These pilot plant studies can provide extremely useful information on the temperature distribution in the reactor and on contacting patterns when... [Pg.246]

The electrostatic precipitator in Example 2.2 is typical of industrial processes the operation of most process equipment is so complicated that application of fundamental physical laws may not produce a suitable model. For example, thermodynamic or chemical kinetics data may be required in such a model but may not be available. On the other hand, although the development of black box models may require less effort and the resulting models may be simpler in form, empirical models are usually only relevant for restricted ranges of operation and scale-up. Thus, a model such as ESP model 1 might need to be completely reformulated for a different size range of particulate matter or for a different type of coal. You might have to use a series of black box models to achieve suitable accuracy for different operating conditions. [Pg.43]

Separation models are generally based on a mixture of empirical and chemical kinetics and thermodynamics. There have been many attempts to relate known physical and chemical properties to observation... [Pg.16]

In chemical equilibria, the energy relations between the reactants and the products are governed by thermodynamics without concerning the intermediate states or time. In chemical kinetics, the time variable is introduced and rate of change of concentration of reactants or products with respect to time is followed. The chemical kinetics is thus, concerned with the quantitative determination of rate of chemical reactions and of the factors upon which the rates depend. With the knowledge of effect of various factors, such as concentration, pressure, temperature, medium, effect of catalyst etc., on reaction rate, one can consider an interpretation of the empirical laws in terms of reaction mechanism. Let us first define the terms such as rate, rate constant, order, molecularity etc. before going into detail. [Pg.1]

In summary, computational quantum mechanics has reached such a state that its use in chemical kinetics is possible. However, since these methods still are at various stages of development, their routine and direct use without carefully evaluating the reasonableness of predictions must be avoided. Since ab initio methods presently are far too expensive from the computational point of view, and still require the application of empirical corrections, semiempirical quantum chemical methods represent the most accessible option in chemical reaction engineering today. One productive approach is to use semiempirical methods to build systematically the necessary thermochemical and kinetic-parameter data bases for mechanism development. Following this, the mechanism would be subjected to sensitivity and reaction path analyses for the determination of the rank-order of importance of reactions. Important reactions and species can then be studied with greatest scrutiny using rigorous ab initio calculations, as well as by experiments. [Pg.111]

Recently, transition state theory calculations were applied to a class of reactions involving OH radicals and haloalkanes, again to account systematically for the expected curvature in Arrhenius plots for these reactions (Cohen and Benson, 1987a). Subsequently, empirical relationships were also derived for the a priori determination of pre-exponential factors (A) and activation energies ( ) based on an assumed T dependency of the pre-exponential factor (Cohen and Benson, 1987b). This and related studies clearly illustrate the broad utility of transition state theory in the systematic development of detailed chemical kinetic mechanisms. [Pg.146]

With chemical reactions, the exponents in a rate expression are usually integers. However, the exponents can be fractions or even negative depending on the complexity of the reaction. Reaction order should not be confused with molecularity. Order is an empirical concept whereas molecularity refers to the actual molecular process. However, for elementary reactions, the reaction order equals the molecularity. See Chemical Kinetics Molecularity First-Order Reactions Rate Constants... [Pg.529]

Referring to reactions in which the reaction velocity is independent of the reactant under consideration. For example, for the reaction A + B C, if the empirical rate expression is v = A [B], the reaction is first order with respect to B but zero order with respect to A. See Chemical Kinetics Rate Saturation Michaelis-Menten Equation... [Pg.713]

The kinetic modeling nomenclature arises from the incorporation of chemical kinetic submodels in EKMA. The empirical term comes from the use of observed 03 peaks in combination with the model-predicted ozone isopleths to develop control strategy options. Thus, the approach historically was to use the model to develop a series of ozone isopleths using conditions specific for that area. The second highest hourly observed 03 concentration and the measured... [Pg.892]

Chemical kinetics must be determined empirically. In the future, with developments in molecular modelling, it may one day be possible to predict the kinetic behaviour of a new catalyst formulation without actually making it. However, that day is a long way off, especially given the complex formulation... [Pg.63]

The order of reaction is an empirical factor widely used in chemical kinetics which may give an insight into the events at the molecular level for kinetics of complex reactions. It relates the reaction rate to the activity of the participating species in the kinetic equation. [Pg.31]

The principles and methods of scale-up can be applied to chemical reactors. In the absence of significant thermal effects, i.e., when the ratio <2r/ Vr may be considered negligible, ideal batch reactors do not show any problem of scale-up, because the volume Vr does not appear in the mathematical model (2.17), so that their performance is only determined by chemical kinetics (see Sect. 2.3). On the contrary, a very complex behavior is expected for real reactors in fact, this behavior cannot be analyzed in terms of mathematical models, and the design procedures must be largely based on semi-empirical rules of scale-up. [Pg.168]

In the beginnings of classical physical chemistry, starting with the publication of the Zeitschrift fUr Physikalische Chemie in 1887, we find the problem of chemical kinetics being attacked in earnest. Ostwald found that the speed of inversion of cane sugar (catalyzed by acids) could be represented by a simple mathematical equation, the so-called compound interest law. Nernst and others measured accurately the rates of several reactions and expressed them mathematically as first order or second order reactions. Arrhenius made a very important contribution to our knowledge of the influence of temperature on chemical reactions. His empirical equation forms the foundation of much of the theory of chemical kinetics which will be discussed in the following chapter. [Pg.2]

Following the period of early exploration and experimental measurement came three decades in which reaction rates in solution were studied and classified. A tremendous amount of semi-quantitative work of an empirical nature has been accumulated, especially in the field of organic chemistry. Many useful generalizations have been drawn from these experimental investigations but the progress of chemical kinetics suffered for lack of stimulating hypotheses. [Pg.2]

In chemical kinetics, semi-empirical non-linear models for reaction rates are commonly used. For example, Boudart [3] summarizes the laws of reaction rates in the formulae... [Pg.262]

Curing of epoxy thermosets requires a knowledge of the chemical kinetics and the crosslinking reactions. This information is necessary to optimize the cure cycle. The parameters that define the cure cycle ultimately determine the crosslink density and the final physical properties of the polymer. In addition to temperature, these parameters include the rate of temperature increase, the number of stages in the cure, the hold temperature at each stage, the pressure at which cure takes place, and the time allotted for the cure cycle. These parameters are usually determined empirically. Once the kinetics are understood and the actual chemistry behind the cure is established, these cure cycle parameters can be chosen based on the desired end properties. Usually the cure cycle seeks to establish a certain degree of cure that is in line with the expected final properties. [Pg.64]

There is a practical difference between exploring the chemical kinetics of a reaction and exploring "property kinetics the rate of change in a useful property of a complex material such as paper. The discipline of chemical kinetics has a sound theoretical foundation directly related to the mechanism of chemical reactions. Property kinetic studies, on the other hand, are empirical and are difficult to relate to chemical mechanisms. The difficulty arises because a complex property, such as tensile strength or brightness, cannot be related easily to the chemical composition of the material under study. Nevertheless, empirical rate constants can be obtained, and these rate constants can be related to chemical processes occurring within the paper. [Pg.189]

Hie selection of a solid catalyst for a given reaction is to a large extent still empirical and based on prior experience or analogy. However, there are now many aspects of this complex situation that are quite well understood. For example we know how the true chemical kinetics, which are an intrinsic property of the catalyst, and all the many aspects of transport of material and heat around the catalytic particles, interact. In other words, the physical characteristics around the catalyst system and their effects on catalyst performance are well known today. The chemist searching for new and better catalysts should always consider these physical factors, for they can be brought under control, and often in this way definite gains can usually be made both in activity and in selectivity. Further, this knowledge enables us to avoid... [Pg.1]

It is quite simple to say that this article deals with Chemical Dynamics. Unfortunately, the simplicity ends here. Indeed, although everybody feels that Chemical Dynamics lies somewhere between Chemical Kinetics and Molecular Dynamics, defining the boundaries between these different fields is generally based more on sur-misal than on knowledge. The main difference between Chemical Kinetics and Chemical Dynamics is that the former is more empirical and the latter essentially mechanical. For this reason, in the present article we do not deal with the details of kinetic theories. These are reviewed excellently elsewhere " The only basic idea which we retain is the reaction rate. Thus the purpose of Chemical Dynamics is to go beyond the definition of the reaction rate of Arrhenius (activation energy and frequency factor) for interpreting it in purely mechanical terms. [Pg.4]

The degradation reactions involved in the breakdown of cellulose are clearly highly complex, and thus the use of the concept of property kinetics is a bold simplifying analogy. In property kinetics most of the degradation processes are assumed to be temperature dependent. In addition, most or all of these processes are assumed to affect some useful macroscopic property such as tensile strength so that the individual effects of these processes can be subsumed into one unified effect that obeys the Arrhenius equation. Thus property kinetic studies are necessarily empirical and show a much less obvious or demonstrable mechanistic connection than chemical kinetic studies between the presumed cause and the measured effect. [Pg.50]

The history of kinetic studies is replete with examples of important, hidden factors which may play a decisive role in the course of a reaction and which were not discovered for many years. In this sense, a good part of chemical kinetics must remain empirical for some time to come. This fact must not, however, detract from the formidable progress made in the... [Pg.4]


See other pages where Empirical chemical kinetics is mentioned: [Pg.277]    [Pg.31]    [Pg.606]    [Pg.19]    [Pg.402]    [Pg.332]    [Pg.125]    [Pg.32]    [Pg.51]    [Pg.3]    [Pg.177]    [Pg.221]    [Pg.224]    [Pg.2]    [Pg.5]    [Pg.293]    [Pg.28]    [Pg.29]    [Pg.32]    [Pg.333]    [Pg.190]    [Pg.198]    [Pg.319]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Chemical kinetics

Chemical kinetics empirical rate laws

Empirical Kinetics

Kinetic Chemicals

© 2024 chempedia.info