Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical electron correlation

A is a parameter that can be varied to give the correct amount of ionic character. Another way to view the valence bond picture is that the incorporation of ionic character corrects the overemphasis that the valence bond treatment places on electron correlation. The molecular orbital wavefimction underestimates electron correlation and requires methods such as configuration interaction to correct for it. Although the presence of ionic structures in species such as H2 appears coimterintuitive to many chemists, such species are widely used to explain certain other phenomena such as the ortho/para or meta directing properties of substituted benzene compounds imder electrophilic attack. Moverover, it has been shown that the ionic structures correspond to the deformation of the atomic orbitals when daey are involved in chemical bonds. [Pg.145]

Another approach is spin-coupled valence bond theory, which divides the electrons into two sets core electrons, which are described by doubly occupied orthogonal orbitals, and active electrons, which occupy singly occupied non-orthogonal orbitals. Both types of orbital are expressed in the usual way as a linear combination of basis functions. The overall wavefunction is completed by two spin fimctions one that describes the coupling of the spins of the core electrons and one that deals with the active electrons. The choice of spin function for these active electrons is a key component of the theory [Gerratt ef al. 1997]. One of the distinctive features of this theory is that a considerable amount of chemically significant electronic correlation is incorporated into the wavefunction, giving an accuracy comparable to CASSCF. An additional benefit is that the orbitals tend to be... [Pg.145]

Some methods of describing electron correlation are compared from the point of view of requirements for theoretical chemical models. The perturbation approach originally introduced by Mpller and Plesset, terminated at finite order, is found to satisfy most of these requirements. It is size consistent, that is applicable to an ensemble of isolated systems in an additive manner. On the other hand, it does not provide an upper bound for the electronic energy. ... [Pg.200]

In order to calculate total energies with a chemical accuracy of 1 kcal/mol, it is necessary to use sophisticated methods for including electron correlation and large basis sets, which is only computationally feasible for small systems. Instead the focus is usually on calculating relative energies, trying to make the errors as constant as possible. [Pg.100]

NMR chemical shift data from die protons ortho or para to the electron-withdrawing group can be used to determine the reactivity of the monomer indirecdy.58 Carbon-13 and 19F NMR can be used to probe the chemical shift at the actual site of nucleophilic reaction. In general, lower chemical shifts correlate widi lower monomer reactivity. Carter reported that a compound might be appropriate for nucleophilic displacement if the 13 C chemical shift of an activated Buoride ranges from 164.5 to 166.2 ppm in CDC1359. [Pg.337]

Table 2. Relative energies E (kJ mol-1) of the butyl cation dependent on the geometry and quantum chemical method used (data from 32) calculations with basis set 1-3 simple ab initio CEPA ab initio with electron correlation)... Table 2. Relative energies E (kJ mol-1) of the butyl cation dependent on the geometry and quantum chemical method used (data from 32) calculations with basis set 1-3 simple ab initio CEPA ab initio with electron correlation)...
For many years, the lectures of Yngve Ohrn on the theory of chemical bonding have been models of clarity and incisiveness to graduate students at the University of Florida and at various topical schools. Their success in introducing the assumptions and conclusions of molecular orbital theory, group theory, electron correlation methods and related subjects has engendered a critical, but liberal attitude toward competing doctrines. [Pg.49]

However, the direct dynamics calculations are computationally expensive, and cannot employ particularly high levels of electron correlation or large basis sets. If certain regions of the potential cannot be treated to within the required accuracy using a computationally affordable level of theory, the results may have unacceptably large errors. Nevertheless, direct dynamics calculations have played and will play a critical role in the discovery and analysis of competing pathways in chemical reactions. [Pg.227]

Figure4.7 Relativistic bond contractions A re for Au2 calculated in the years from 1989 to 2001 using different quantum chemical methods. Electron correlation effects Acte = te(corn) — /"e(HF) at the relativistic level are shown on the right hand side of each bar if available. From the left to the right in chronological order Hartree-Fock-Slater results from Ziegler et al. [147] AIMP coupled pair functional results from Stbmberg and Wahlgren [148] EC-ARPP results from Schwerdtfeger [5] EDA results from Haberlen and Rdsch [149] Dirac-Fock-Slater... Figure4.7 Relativistic bond contractions A re for Au2 calculated in the years from 1989 to 2001 using different quantum chemical methods. Electron correlation effects Acte = te(corn) — /"e(HF) at the relativistic level are shown on the right hand side of each bar if available. From the left to the right in chronological order Hartree-Fock-Slater results from Ziegler et al. [147] AIMP coupled pair functional results from Stbmberg and Wahlgren [148] EC-ARPP results from Schwerdtfeger [5] EDA results from Haberlen and Rdsch [149] Dirac-Fock-Slater...
Schwerdtfeger, P. (1991) Relativistic and Electron Correlation Contributions in Atomic and Molecular Properties. Benchmark Calculations on Au and Au2. Chemical Physics Letters, 183, 457 163. Neogrady, P., Kello, V., Urban, M. and Sadlej, A.J. (1997) Ionization Potentials and Electron Affinities of Cu, Ag, and Au Electron Correlation and Relativistic Effects. International Journal of Quantum Chemistry, 63, 557-565. [Pg.221]

Eleig, T. and Visscher, L. (2005) Large-scale electron correlation calculations in the framework of the spin-free dirac formalism the Au2 molecule revisited. Chemical Physics, 311, 63. [Pg.229]

Lantto, P. and Vaara, J. (2006) Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides Interplay of relativistic and electron correlation effects. Journal of Chemical Physics, 125, 174315-1-174315-7. [Pg.231]

Secondly, correlations in the initial state can lead to experimental orbital momentum densities significantly different from the calculated Hartree-Fock ones. Figure 3 shows such a case for the outermost orbital of water, showing how electron-electron correlations enhance the density at low momentum. Since low momentum components correspond in the main to large r components in coordinate space, the importance of correlations to the chemically interesting long range part of the wave function is evident. [Pg.208]

Although the band model explains well various electronic properties of metal oxides, there are also systems where it fails, presumably because of neglecting electronic correlations within the solid. Therefore, J. B. Good-enough presented alternative criteria derived from the crystal structure, symmetry of orbitals and type of chemical bonding between metal and oxygen. This semiempirical model elucidates and predicts electrical properties of simple oxides and also of more complicated oxidic materials, such as bronzes, spinels, perowskites, etc. [Pg.321]


See other pages where Chemical electron correlation is mentioned: [Pg.253]    [Pg.136]    [Pg.182]    [Pg.315]    [Pg.402]    [Pg.529]    [Pg.98]    [Pg.101]    [Pg.195]    [Pg.2]    [Pg.7]    [Pg.34]    [Pg.45]    [Pg.123]    [Pg.404]    [Pg.112]    [Pg.30]    [Pg.576]    [Pg.230]    [Pg.5]    [Pg.68]    [Pg.194]    [Pg.195]    [Pg.212]    [Pg.217]    [Pg.221]    [Pg.222]    [Pg.253]    [Pg.258]    [Pg.106]    [Pg.560]    [Pg.912]    [Pg.1257]    [Pg.55]    [Pg.85]   


SEARCH



Chemical correlators

Chemical problems, electron correlation

Correlated electrons

Correlation electron

Electron-correlated calculations, nuclear chemical shifts

Electron-correlated calculations, nuclear magnetic resonance chemical

Electronic chemicals

Electronic correlations

Nuclear magnetic resonance chemical shifts, electron-correlated calculations

© 2024 chempedia.info