Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process chemical composition

It is known that the structures present in a polymer reflect the processing variables and that they greatly influence the physical and mechanical properties. Thus, the properties of polymeric materials are influenced by their chemical composition, process history, and the resulting morphology. Morphological study usually requires two preparatory steps prior to the study itself selection of instrumental techniques and development of specimen preparation techniques. Structural observations must be correlated with the properties of the material in order to develop an understanding and applications of the material. Figure 22.1 illustrates the types of optical microscope (OM) techniques commonly used to examine polymer specimens [2]. [Pg.185]

Chin et al. [16] developed the chemical composition-process relationships in CVD-SiC from H2-CH3SiCl3. The phase relationships given in Fig. 10 indicate that the two parameters of supersaturation and temperature are joined by the mass transport requirements in terms of the rate of deposition of silicon carbide. In this case, the rate is also dependent on the hydrogen concentration as it is required in the reaction to form SiC and is the carrier gas for the reactants. At low hydrogen levels, pyrolytic carbon is formed. [Pg.168]

Fig. 10. Chemical composition-process relationships in CVD SiC from H2-CH3SiCl3. After Chin et al. [16], Reproduced with permission of Elsevier Science Publishing Co., New York. Fig. 10. Chemical composition-process relationships in CVD SiC from H2-CH3SiCl3. After Chin et al. [16], Reproduced with permission of Elsevier Science Publishing Co., New York.
Synthetic polymers exhibit substantial dependence of their mechanical, thermal, optical, and electrical properties on chemical composition, processing... [Pg.476]

Setting up a pedigree material to be used repeatedly in order to calibrate each laboratory or field test is strongly recommended. This will ensure reproducibility of the test procedure. This material should be thoroughly characterized as to its chemical composition, process history, and microstructure. The size and shape of the reference material should reflect that of the candidate product forms being screened. [Pg.435]

Process control. Chemical engineers will develop and implement better sensors for temperature, pressure, and chemical composition. Processes will be designed to integrate artificial intelligence for process control, monitoring, and safety. [Pg.4]

Most processes are catalyzed where catalysts for the reaction are known. The choice of catalyst is crucially important. Catalysts increase the rate of reaction but are unchanged in quantity and chemical composition at the end of the reaction. If the catalyst is used to accelerate a reversible reaction, it does not by itself alter the position of the equilibrium. When systems of multiple reactions are involved, the catalyst may have different effects on the rates of the different reactions. This allows catalysts to be developed which increase the rate of the desired reactions relative to the undesired reactions. Hence the choice of catalyst can have a major influence on selectivity. [Pg.46]

The properties required by jet engines are linked to the combustion process particular to aviation engines. They must have an excellent cold behavior down to -50°C, a chemical composition which results in a low radiation flame that avoids carbon deposition on the walls, a low level of contaminants such as sediment, water and gums, in order to avoid problems during the airport storage and handling phase. [Pg.178]

With the introduction of new antipollution standards as well as limitations envisaged for the chemical composition of finished products, current refining flowsheets and especially those beyond the year 2000 will have to adapt to the new specifications using new processes. [Pg.365]

To define a steel, it would be necessary to know its chemical composition, its physicochemical constitution, its metallurgical state (aimealed, hammered) and other parameters (superficial and chemical processing,. ..). The set of structural characters of a metallic alloy is consequently function of the chemical composition, the elaboration processing, the thermal processing, the temperature, etc. [Pg.290]

Sample Preservation Once removed from its target population, a liquid sample s chemical composition may change as a result of chemical, biological, or physical processes. Following its collection, samples are preserved by controlling the solu-... [Pg.194]

Filter Selection. A variety of product- and process-related factors govern filter selection. Considerations include the characteristics of the fluid to be filtered, ie, its chemical composition and compatibiHty with the filtration system (inclusive of the membrane, filter hardware, piping, etc), the level of bioburden present, specifications on effluent quaHty, the volume of product to be filtered, flow rate, and temperature. [Pg.139]

AWS) has issued specifications covering the various filler-metal systems and processes (2), eg, AWS A5.28 which appHes to low alloy steel filler metals for gas-shielded arc welding. A typical specification covers classification of relevant filler metals, chemical composition, mechanical properties, testing procedures, and matters related to manufacture, eg, packaging, identification, and dimensional tolerances. New specifications are issued occasionally, in addition to ca 30 estabUshed specifications. Filler-metal specifications are also issued by the ASME and the Department of Defense (DOD). These specifications are usually similar to the AWS specification, but should be specifically consulted where they apply. [Pg.348]

The properties of fillers which induence a given end use are many. The overall value of a filler is a complex function of intrinsic material characteristics, eg, tme density, melting point, crystal habit, and chemical composition and of process-dependent factors, eg, particle-si2e distribution, surface chemistry, purity, and bulk density. Fillers impart performance or economic value to the compositions of which they are part. These values, often called functional properties, vary according to the nature of the appHcation. A quantification of the functional properties per unit cost in many cases provides a vaUd criterion for filler comparison and selection. The following are summaries of key filler properties and values. [Pg.366]

There are several possible reasons why a scientific study of an art work may be desirable. An obvious one is in cases where the authenticity of an object is doubted on styHstic grounds, but no unanimous opinion exists. The scientist can identify the materials, analy2e the chemical composition, and then investigate whether these correspond to what has been found in comparable objects of unquestioned provenance. If the sources for the materials can be characterized, eg, through trace element composition or stmcture, it may be possible to determine whether the sources involved in the procurement of the materials for comparable objects with known provenance are the same. Comparative examination of the technological processes involved in the manufacture allows for conclusions as to whether the object was made using techniques actually available to the people who supposedly created it. Additionally, dating techniques may lead to the estabUshment of the date of manufacture. [Pg.416]

Food processing operations can be optimi2ed according to the principles used for other chemical processes if the composition, thermophysical properties, and stmcture of the food is known. However, the complex chemical composition and physical stmctures of most foods can make process optimi2ation difficult. Moreover, the quaUty of a processed product may depend more on consumer sensory responses than on measurable chemical or physical attributes. [Pg.457]

Chemical Composition. Chemical compositional data iaclude proximate and ultimate analyses, measures of aromaticity and reactivity, elemental composition of ash, and trace metal compositions of fuel and ash. All of these characteristics impact the combustion processes associated with wastes as fuels. Table 4 presents an analysis of a variety of wood-waste fuels these energy sources have modest energy contents. [Pg.54]

Flow Sheets. AH minerals processing operations function on the basis of a flow sheet depicting the flow of soHds and Hquids in the entire plant (6,13,14). The complexity of a flow sheet depends on the nature of the ore treated and the specifications for the final product. The basic operations in a flow sheet are size reduction (qv) (comminution) and/or size separation (see Separation, size), minerals separation, soHd—Hquid separation, and materials handling. The overaH flow sheet depends on whether the specification for the final mineral product is size, chemical composition, ie, grade, or both. Products from a quarry, for example, may have a size specification only, whereas metal concentrates have a grade specification. [Pg.394]

Since successful commercialization of Kapton by Du Pont Company in the 1960s (10), numerous compositions of polyimide and various new methods of syntheses have been described in the Hterature (1—5). A successful result for each method depends on the nature of the chemical components involved in the system, including monomers, intermediates, solvents, and the polyimide products, as well as on physical conditions during the synthesis. Properties such as monomer reactivity and solubiHty, and the glass-transition temperature,T, crystallinity, T, and melt viscosity of the polyimide products ultimately determine the effectiveness of each process. Accordingly, proper selection of synthetic method is often critical for preparation of polyimides of a given chemical composition. [Pg.396]


See other pages where Process chemical composition is mentioned: [Pg.190]    [Pg.190]    [Pg.1625]    [Pg.1947]    [Pg.651]    [Pg.130]    [Pg.312]    [Pg.349]    [Pg.373]    [Pg.401]    [Pg.189]    [Pg.358]    [Pg.417]    [Pg.44]    [Pg.461]    [Pg.217]    [Pg.153]    [Pg.125]    [Pg.181]    [Pg.165]    [Pg.165]    [Pg.21]    [Pg.238]    [Pg.153]    [Pg.313]    [Pg.379]    [Pg.1]    [Pg.268]    [Pg.3]    [Pg.203]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Composite processing

Composition processing

© 2024 chempedia.info