Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chains, fuel

As in all long-chain fuel processes, this initiation step does not appear to contribute significantly to the product distribution and, indeed, no formaldehyde is observed experimentally as a reaction intermediate. [Pg.128]

HF is intimately contacted with isobutane and mixed with light olefins (ethylenes, propenes, etc.) under pressure at 40-45°C to produce branch chain fuel which has very high octane value. HF, being only slightly soluble in hydrocarbons, is easily separated, recycled and regenerated. The alkylate is water washed and dried. The consumption of hydrofluoric acid per barrel of alkylate varies from 0.09 to 0.23 kg. [Pg.664]

Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proc. Nad. Acad. Sci. U.S.A., 109, 17925-17930. [Pg.571]

With regards to the overall balance of combustion, the chemical structure of the motor or heating fuel, e.g., the number of carbon atoms in tbe chain and the nature of the bonding, does not play a direct role the only important item is the overall composition, that is, the contents of carbon, hydrogen, and — eventually— oxygen in the case of alcohols or ethers added to the fuel. [Pg.179]

To avoid these problems, refiners commonly use additives called detergents" (Hall et al., 1976), (Bert et al., 1983). These are in reality surfactants made from molecules having hydrocarbon chains long enough to ensure their solubility in the fuel and a polar group that enables them to be absorbed on the walls and prevent deposits from sticking. The most effective chemical structures are succinimides, imides, and fatty acid amines. The required dosages are between 500 and 1000 ppm of active material. [Pg.243]

Urea has the remarkable property of forming crystalline complexes or adducts with straight-chain organic compounds. These crystalline complexes consist of a hoUow channel, formed by the crystallized urea molecules, in which the hydrocarbon is completely occluded. Such compounds are known as clathrates. The type of hydrocarbon occluded, on the basis of its chain length, is determined by the temperature at which the clathrate is formed. This property of urea clathrates is widely used in the petroleum-refining industry for the production of jet aviation fuels (see Aviation and other gas-TURBINE fuels) and for dewaxing of lubricant oils (see also Petroleum, refinery processes). The clathrates are broken down by simply dissolving urea in water or in alcohol. [Pg.310]

Long-chain esters of pentaerythritol have been used as pour-point depressants for lubricant products, ranging from fuel oils or diesel fuels to the high performance lubricating oils requited for demanding outiets such as aviation, power turbines, and automobiles. These materials requite superior temperature, viscosity, and aging resistance, and must be compatible with the wide variety of metallic surfaces commonly used in the outiets (79—81). [Pg.466]

Hexane refers to the straight-chain hydrocarbon, C H branched hydrocarbons of the same formula are isohexanes. Hexanes include the branched compounds, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, and the straight-chain compound, / -hexane. Commercial hexane is a narrow-boiling mixture of these compounds with methylcyclopentane, cyclohexane, and benzene (qv) minor amounts of and hydrocarbons also may be present. Hydrocarbons in commercial hexane are found chiefly in straight-mn gasoline which is produced from cmde oil and natural gas Hquids (see Gasoline AND OTHER MOTOR fuels Gas,natural). Smaller volumes occur in certain petroleum refinery streams. [Pg.405]

The functional group ia collectors for nonsulfide minerals is characterized by the presence of either a N (amines) or an O (carboxyUc acids, sulfonates, etc) as the donor atoms. In addition to these, straight hydrocarbons, such as fuel oil, diesel, kerosene, etc, are also used extensively either as auxiUary or secondary collectors, or as primary collectors for coal and molybdenite flotation. The chain length of the hydrocarbon group is generally short (2—8 C) for the sulfide collectors, and long (10—20 C) for nonsulfide collectors, because sulfides are generally more hydrophobic than most nonsulfide minerals (10). [Pg.412]

The nuclear chain reaction can be modeled mathematically by considering the probable fates of a typical fast neutron released in the system. This neutron may make one or more coUisions, which result in scattering or absorption, either in fuel or nonfuel materials. If the neutron is absorbed in fuel and fission occurs, new neutrons are produced. A neutron may also escape from the core in free flight, a process called leakage. The state of the reactor can be defined by the multiplication factor, k, the net number of neutrons produced in one cycle. If k is exactly 1, the reactor is said to be critical if / < 1, it is subcritical if / > 1, it is supercritical. The neutron population and the reactor power depend on the difference between k and 1, ie, bk = k — K closely related quantity is the reactivity, p = bk jk. i the reactivity is negative, the number of neutrons declines with time if p = 0, the number remains constant if p is positive, there is a growth in population. [Pg.211]

The analysis of steady-state and transient reactor behavior requires the calculation of reaction rates of neutrons with various materials. If the number density of neutrons at a point is n and their characteristic speed is v, a flux effective area of a nucleus as a cross section O, and a target atom number density N, a macroscopic cross section E = Na can be defined, and the reaction rate per unit volume is R = 0S. This relation may be appHed to the processes of neutron scattering, absorption, and fission in balance equations lea ding to predictions of or to the determination of flux distribution. The consumption of nuclear fuels is governed by time-dependent differential equations analogous to those of Bateman for radioactive decay chains. The rate of change in number of atoms N owing to absorption is as follows ... [Pg.211]

The determination of critical si2e or mass of nuclear fuel is important for safety reasons. In the design of the atom bombs at Los Alamos, it was cmcial to know the critical mass, ie, that amount of highly enriched uranium or plutonium that would permit a chain reaction. A variety of assembhes were constmcted. Eor example, a bare metal sphere was found to have a critical mass of approximately 50 kg, whereas a natural uranium reflected 235u sphere had a critical mass of only 16 kg. [Pg.224]


See other pages where Chains, fuel is mentioned: [Pg.199]    [Pg.205]    [Pg.192]    [Pg.97]    [Pg.176]    [Pg.337]    [Pg.360]    [Pg.199]    [Pg.205]    [Pg.192]    [Pg.97]    [Pg.176]    [Pg.337]    [Pg.360]    [Pg.187]    [Pg.195]    [Pg.231]    [Pg.201]    [Pg.128]    [Pg.1050]    [Pg.225]    [Pg.38]    [Pg.136]    [Pg.314]    [Pg.51]    [Pg.578]    [Pg.21]    [Pg.80]    [Pg.81]    [Pg.155]    [Pg.180]    [Pg.187]    [Pg.273]    [Pg.157]    [Pg.458]    [Pg.487]    [Pg.214]    [Pg.221]    [Pg.223]    [Pg.229]    [Pg.236]    [Pg.236]    [Pg.236]    [Pg.236]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



© 2024 chempedia.info