Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chain transfer defined

Modify Equation 9.76 to include chain transfer. Define any terms introduced. [Pg.183]

Throughout this section we have used mostly p and u to describe the distribution of molecular weights. It should be remembered that these quantities are defined in terms of various concentrations and therefore change as the reactions proceed. Accordingly, the results presented here are most simply applied at the start of the polymerization reaction when the initial concentrations of monomer and initiator can be used to evaluate p or u. The termination constants are known to decrease with the extent of conversion of monomer to polymer, and this effect also complicates the picture at high conversions. Note, also, that chain transfer has been excluded from consideration in this section, as elsewhere in the chapter. We shall consider chain transfer reactions in the next section. [Pg.388]

Inhibitors are characterized by inhibition constants which are defined as the ratio of the rate constant for transfer to inhibitor to the propagation constant for the monomer in analogy with Eq. (6.87) for chain transfer constants. For styrene at 50°C the inhibition constant of p-benzoquinone is 518, and that for O2 is 1.5 X 10. The Polymer Handbook (Ref. 3) is an excellent source for these and most other rate constants discussed in this chapter. [Pg.396]

A living cationic polymeriza tion of isobutylene and copolymeriza tion of isobutylene and isoprene has been demonstrated (22,23). Living copolymerizations, which proceed in the absence of chain transfer and termination reactions, yield the random copolymer with narrow mol wt distribution and well-defined stmcture, and possibly at a higher polymerization temperature than the current commercial process. The isobutylene—isoprene copolymers are prepared by using cumyl acetate BCl complex in CH Cl or CH2CI2 at —30 C. The copolymer contains 1 8 mol % trans 1,4-isoprene... [Pg.480]

If both addition and fragmentation arc irreversible the kinetics differ little from conventional chain transfer. In the more general case, the rate constant for chain transfer is defined in terms of the rate constant for addition and a partition coefficient which defines how the adduct is partitioned between products and starting materials (eq. 19). [Pg.287]

This equation can be solved numerically to give values of Clr and Ctr.404 For reversible addition-fragmentation chain transfer (RAFT) (Scheme 6.5), the rate constant for the reverse reaction is defined as shown in eq. 22 ... [Pg.288]

For addition-fragmentation chain transfer, the rate constants for the forward and reverse reaclions are defined as shown in eqs. 21 and 22 respectively. [Pg.504]

Crosslihkinq Density Distribution. Let us consider the statistical copolymerization of vinyl/divinyl monomers without chain transfer to polymer for simplicity. In this case the crosslinking density p is defined as follows. [Pg.243]

Zinc compounds have recently been used as pre-catalysts for the polymerization of lactides and the co-polymerization of epoxides and carbon dioxide (see Sections 2.06.8-2.06.12). The active catalysts in these reactions are not organozinc compounds, but their protonolyzed products. A few well-defined organozinc compounds, however, have been used as co-catalysts and chain-transfer reagents in the transition metal-catalyzed polymerization of olefins. [Pg.328]

While in most of the reports on SIP free radical polymerization is utihzed, the restricted synthetic possibihties and lack of control of the polymerization in terms of the achievable variation of the polymer brush architecture limited its use. The alternatives for the preparation of weU-defined brush systems were hving ionic polymerizations. Recently, controlled radical polymerization techniques has been developed and almost immediately apphed in SIP to prepare stracturally weU-de-fined brush systems. This includes living radical polymerization using nitroxide species such as 2,2,6,6-tetramethyl-4-piperidin-l-oxyl (TEMPO) [285], reversible addition fragmentation chain transfer (RAFT) polymerization mainly utilizing dithio-carbamates as iniferters (iniferter describes a molecule that functions as an initiator, chain transfer agent and terminator during polymerization) [286], as well as atom transfer radical polymerization (ATRP) were the free radical is formed by a reversible reduction-oxidation process of added metal complexes [287]. All techniques rely on the principle to drastically reduce the number of free radicals by the formation of a dormant species in equilibrium to an active free radical. By this the characteristic side reactions of free radicals are effectively suppressed. [Pg.423]

Recent advances in the development of well-defined homogeneous metallocene-type catalysts have facilitated mechanistic studies of the processes involved in initiation, propagation, and chain transfer reactions occurring in olefins coordi-native polyaddition. As a result, end-functional polyolefin chains have been made available [103].For instance, Waymouth et al.have reported about the formation of hydroxy-terminated poly(methylene-l,3-cyclopentane) (PMCP-OH) via selective chain transfer to the aluminum atoms of methylaluminoxane (MAO) in the cyclopolymerization of 1,5-hexadiene catalyzed by di(pentameth-ylcyclopentadienyl) zirconium dichloride (Scheme 37). Subsequent equimolar reaction of the hydroxyl extremity with AlEt3 afforded an aluminum alkoxide macroinitiator for the coordinative ROP of sCL and consecutively a novel po-ly(MCP-b-CL) block copolymer [104]. The diblock structure of the copolymer... [Pg.44]

In aprotic solvents, chain transfer occurs exclusively by fl-H elimination, unless a protic acid or water is present in the reaction mixture, in which case protonolysis may occur. Indirect evidence (for example, M, and M measurements) proves that P-H chain transfer in aprotic solvents is slower than methanolysis in protic solvents with comparable structures of the Pd" catalyst [5f, 17, 20, 21]. This effect and the possibility of using well-defined catalysts have remarkably favored the use of in situ NMR spectroscopy for the detection of intermediates during CO/copolymerisation in organic solvents. [Pg.282]

A chain-transfer constant C for a substance is defined as the ratio of the rate constant klr for the chain transfer of a propagating radical with that substance to the rate constant kp for propagation of the radical. The chain-transfer constants for monomer, chain-transfer agent, and initiator are then given by... [Pg.239]

Hawker et al. 2001 Hawker and Wooley 2005). Recent developments in living radical polymerization allow the preparation of structurally well-defined block copolymers with low polydispersity. These polymerization methods include atom transfer free radical polymerization (Coessens et al. 2001), nitroxide-mediated polymerization (Hawker et al. 2001), and reversible addition fragmentation chain transfer polymerization (Chiefari et al. 1998). In addition to their ease of use, these approaches are generally more tolerant of various functionalities than anionic polymerization. However, direct polymerization of functional monomers is still problematic because of changes in the polymerization parameters upon monomer modification. As an alternative, functionalities can be incorporated into well-defined polymer backbones after polymerization by coupling a side chain modifier with tethered reactive sites (Shenhar et al. 2004 Carroll et al. 2005 Malkoch et al. 2005). The modification step requires a clean (i.e., free from side products) and quantitative reaction so that each site has the desired chemical structures. Otherwise it affords poor reproducibility of performance between different batches. [Pg.139]

Of course, it is dangerous to exclude the possibility of aluminium polymerization on the basis of calculations. Reality is invariably more complicated than the simplified models put into computers. However, in view of the uncertainties surrounding existing systems, and the doubts thrown by calculations, any well-defined aluminium alkyl claimed to be active should at least be checked, as an isolated complex, for its propensity to olefin insertion vs. chain transfer, e.g,. using the Al-i-butyl/ethene experiment reported by Jordan [15], as explained above. [Pg.151]


See other pages where Chain transfer defined is mentioned: [Pg.236]    [Pg.412]    [Pg.352]    [Pg.452]    [Pg.446]    [Pg.4]    [Pg.93]    [Pg.178]    [Pg.25]    [Pg.345]    [Pg.13]    [Pg.20]    [Pg.50]    [Pg.52]    [Pg.82]    [Pg.22]    [Pg.179]    [Pg.75]    [Pg.126]    [Pg.197]    [Pg.209]    [Pg.210]    [Pg.119]    [Pg.8]    [Pg.406]    [Pg.413]    [Pg.75]    [Pg.46]    [Pg.227]    [Pg.260]    [Pg.316]    [Pg.390]    [Pg.93]    [Pg.112]    [Pg.139]   
See also in sourсe #XX -- [ Pg.239 ]

See also in sourсe #XX -- [ Pg.239 ]




SEARCH



© 2024 chempedia.info