Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chain transfer, alkyl halides

The reactivities of the substrate and the nucleophilic reagent change vyhen fluorine atoms are introduced into their structures This perturbation becomes more impor tant when the number of atoms of this element increases A striking example is the reactivity of alkyl halides S l and mechanisms operate when few fluorine atoms are incorporated in the aliphatic chain, but perfluoroalkyl halides are usually resistant to these classical processes However, formal substitution at carbon can arise from other mecharasms For example nucleophilic attack at chlorine, bromine, or iodine (halogenophilic reaction, occurring either by a direct electron-pair transfer or by two successive one-electron transfers) gives carbanions These intermediates can then decompose to carbenes or olefins, which react further (see equations 15 and 47) Single-electron transfer (SET) from the nucleophile to the halide can produce intermediate radicals that react by an SrnI process (see equation 57) When these chain mechanisms can occur, they allow reactions that were previously unknown Perfluoroalkylation, which used to be very rare, can now be accomplished by new methods (see for example equations 48-56, 65-70, 79, 107-108, 110, 113-135, 138-141, and 145-146)... [Pg.446]

The corresponding reactions of transient Co(OEP)H with alkyl halides and epoxides in DMF has been proposed to proceed by an ionic rather than a radical mechanism, with loss of from Co(OEP)H to give [Co(TAP), and products arising from nucleophilic attack on the substrates. " " Overall, a general kinetic model for the reaction of cobalt porphyrins with alkenes under free radical conditions has been developed." Cobalt porphyrin hydride complexes are also important as intermediates in the cobalt porphyrin-catalyzed chain transfer polymerization of alkenes (see below). [Pg.289]

Radicals for addition reactions can be generated by halogen atom abstraction by stannyl radicals. The chain mechanism for alkylation of alkyl halides by reaction with a substituted alkene is outlined below. There are three reactions in the propagation cycle of this chain mechanism addition, hydrogen atom abstraction, and halogen atom transfer. [Pg.960]

Electrogenerated monovalent Co complexes of the well-known open chain N202 Schiff base ligands salen (8), salphen (9), and their substituted derivatives undergo oxidative additions with alkyl halides. Reactions of the complex with substrates within the series RBr (R = Pr, Bu, t-Bu) proceed at different rates. The reaction occurs by an inner-sphere alkyl-bridged electron transfer, with a Co1- R+- X-transition state, which is sensitive to distortions of the complex in different configurations.124... [Pg.11]

Potassium acetate, for example, can be readily alkylated by the use of an equivalent amount of an alkylating reagent (for example, an alkyl halide) in the presence of the phase-transfer catalyst Aliquat 336 (10 mol%) (Scheme 4.7) [16]. Yields are always near quantitative within a few minutes of microwave irradiation, irrespective of the chain length and the nature of the leaving group. This procedure has been scaled-up from 50 mmol to 2 mol scale in a large batch reactor [17]. [Pg.61]

The DPs obtained in cationic polymerizations are affected not only by the direct effect of the polarity of the solvent on the rate constants, but also by its effect on the degree of dissociation of the ion-pairs and, hence, on the relative abundance of free ions and ion-pairs, and thus the relative importance of unimolecular and bimolecular chain-breaking reactions between ions of opposite charge (see Section 6). Furthermore, in addition to polarity effects the chain-transfer activity of alkyl halide and aromatic solvents has a quite distinct effect on the DP. The smaller the propagation rate constant, the more important will these effects be. [Pg.149]

On the other hand, the very nature of the co-catalytic function implies that at least a part of the co-catalyst molecule is consumed in the course of the reaction. In other words, of the ions formed by interaction of catalyst and co-catalyst, the cation must, and the anion may be incorporated in the polymer, e.g., whenever an acid is the co-catalyst, the proton is transferred during the initiation reaction to a monomer molecule which then forms the first link in the chain. The anion may or may not become attached to the end of a polymer molecule in a termination reaction. Similarly, when an alkyl halide acts as co-catalyst [6, 11], the alkyl cation necessarily forms the start of a chain, and a halide ion may be incorporated in a termination reaction. [Pg.247]

Monocarbamoylation of diols is generally accomplished only with great difficulty. Reaction of the diol with an alkyl isocyanate is a possibility, but trimerization of the isocyanate frequently occurs [73]. The monocarbamic esters, which have PAF receptor antagonist activity, can be obtained however in acceptable yields via the phase-transfer catalysed in situ formation of the alkyl isocyanate from potassium isocyanate and an alkyl halide, and its subsequent reaction with the diol (see Scheme 3.8 for typical examples) [74], The diols tend to react more rapidly than do simple alcohols and m-diols are more effectively esterified that are /ra/rs-diols. Additionally, the longer the chain length between the hydroxyl centres, the less effective is the reaction. This has led to the reasonable hypothesis that a cyclic H-bonded intermediate between the two hydroxyl groups and the alkyl isocyanate are critical for the preferential and rapid formation of the carbamate. [Pg.104]

Water, alcohols, acids, anhydrides, and esters have varying chain-transfer properties [Mathie-son, 1963]. The presence of any of these transfer agents in sufficient concentrations results in Reaction 5-28 becoming the dominant mode of termination. Termination by these compounds involves transfer of HO, RO, or RCOO anion to the propagating carbocation. Aromatics, ethers, and alkyl halides are relatively weak chain-transfer agents. Transfer to aromatics occurs by alkylation of the aromatic ring. [Pg.388]

Atom Transfer Radical Polymerisation (ATRP) was discovered independently by Wang and Matyjaszewski, and Sawamoto s group in 1995. Since then, this field has become a hot topic in synthetic polymer chemistry, with over 1000 papers published worldwide and more than 100 patent applications filed to date. ATRP is based on Kharasch chemistry overall it involves the insertion of vinyl monomers between the R-X bond of an alkyl halide-based initiator. At any given time in the reaction, most of the polymer chains are capped with halogen atoms (Cl or Br), and are therefore dormant and do not propagate see Figure 1. [Pg.21]

A variety of alkyl halides can be employed as an electrophile in this alkylation, as summarized in Table 5.8 (entries 1-5). The efficiency of the transmission of stereochemical information was not affected by the side-chain structure of the pre-existing amino acid residues, as demonstrated in the phase-transfer benzylation... [Pg.95]

Controlled free-radical polymerization methods, like atom-transfer radical polymerization (ATRP), can yield polymer chains that have a very narrow molecular-weight distribution and allow the synthesis of block copolymers. In a collaboration between Matyjaszewski and DeSimone (Xia et al., 1999), ATRP was performed in C02 for the first time. PFOMA-/)-PMMA, PFOMA-fr-PDMAEMA [DMAEMA = 2-(dimethylamino)ethyl methacrylate], and PMMA-/)-PFOA-/)-PM M A copolymers were synthesized in C02 using Cu(0), CuCl, a functionalized bipyridine ligand, and an alkyl halide initiator. The ATRP method was also conducted as a dispersion polymerization of MMA in C02 with PFOA as the stabilizer, generating a kine-... [Pg.156]

Mixtures of alkyl halides and Lewis acids are well-known initiating systems for the polymerizations of alkenes, and the mechanism suggested for these reactions by Kennedy [55] appears to be generally accepted (Scheme 9), although the importance of the chain transfer step from initiator has been questioned [56]. [Pg.65]


See other pages where Chain transfer, alkyl halides is mentioned: [Pg.137]    [Pg.593]    [Pg.575]    [Pg.562]    [Pg.247]    [Pg.575]    [Pg.39]    [Pg.161]    [Pg.150]    [Pg.524]    [Pg.142]    [Pg.90]    [Pg.36]    [Pg.146]    [Pg.482]    [Pg.171]    [Pg.446]    [Pg.141]    [Pg.385]    [Pg.246]    [Pg.544]    [Pg.205]    [Pg.33]    [Pg.341]    [Pg.862]    [Pg.870]    [Pg.132]    [Pg.59]    [Pg.225]    [Pg.301]    [Pg.546]    [Pg.427]    [Pg.648]    [Pg.423]    [Pg.808]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Alkyl transfer

Halide transfer

Transfer-alkylation

© 2024 chempedia.info