Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation chain dynamics

Entanglements of flexible polymer chains contribute to non-linear viscoelastic response. Motions hindered by entanglements are a contributor to dielectric and diffusion properties since they constrain chain dynamics. Macromolecular dynamics are theoretically described by the reptation model. Reptation includes fluctuations in chain contour length, entanglement release, tube dilation, and retraction of side chains as the molecules translate using segmental motions, through a theoretical tube. The reptation model shows favourable comparison with experimental data from viscoelastic and dielectric measurements. The model reveals much about chain dynamics, relaxation times and molecular structures of individual macromolecules. [Pg.606]

Clearly, both the pivot and the slithering snake algorithms are incapable of reproducing true chain dynamics at molecular basis, covering the time range of typical chain relaxation times. Therefore, in the following we focus on two alternative methods, broadly used at present to this end. [Pg.563]

The scaling results above all pertain to local segmental relaxation, with the exception of the viscosity data in Figure 24.5. Higher temperature and lower times involve the chain dynamics, described, for example, by Rouse and reptation models [22,89]. These chain modes, as discussed above, have different T- and P-dependences than local segmental relaxation. [Pg.667]

In summary, the chain dynamics for short times, where entanglement effects do not yet play a role, are excellently described by the picture of Langevin dynamics with entropic restoring forces. The Rouse model quantitatively describes (1) the Q-dependence of the characteristic relaxation rate, (2) the spectral form of both the self- and the pair correlation, and (3) it establishes the correct relation to the macroscopic viscosity. [Pg.22]

The presence of four kinds of nuclear magnetic resonance (NMR) observable nuclei ( H, uB, 13C, and 29Si) allows poly(m-carborane-siloxane) to be readily investigated using NMR spectroscopy. In addition, H spin-echo NMR relaxation techniques can provide an insight into polymer segmental chain dynamics and therefore useful information on material viscoelastic characteristics. [Pg.105]

Fig. 4.20 Temperature dependence of the average relaxation times of PIB results from rheological measurements [34] dashed-dotted line), the structural relaxation as measured by NSE at Qmax (empty circle [125] and empty square), the collective time at 0.4 A empty triangle), the time corresponding to the self-motion at Q ax empty diamond),NMR dotted line [136]), and the application of the Allegra and Ganazzoli model to the single chain dynamic structure factor in the bulk (filled triangle) and in solution (filled diamond) [186]. Solid lines show Arrhenius fitting curves. Dashed line is the extrapolation of the Arrhenius-like dependence of the -relaxation as observed by dielectric spectroscopy [125]. (Reprinted with permission from [187]. Copyright 2003 Elsevier)... Fig. 4.20 Temperature dependence of the average relaxation times of PIB results from rheological measurements [34] dashed-dotted line), the structural relaxation as measured by NSE at Qmax (empty circle [125] and empty square), the collective time at 0.4 A empty triangle), the time corresponding to the self-motion at Q ax empty diamond),NMR dotted line [136]), and the application of the Allegra and Ganazzoli model to the single chain dynamic structure factor in the bulk (filled triangle) and in solution (filled diamond) [186]. Solid lines show Arrhenius fitting curves. Dashed line is the extrapolation of the Arrhenius-like dependence of the -relaxation as observed by dielectric spectroscopy [125]. (Reprinted with permission from [187]. Copyright 2003 Elsevier)...
The description of the chain dynamics in terms of the Rouse model is not only limited by local stiffness effects but also by local dissipative relaxation processes like jumps over the barrier in the rotational potential. Thus, in order to extend the range of description, a combination of the modified Rouse model with a simple description of the rotational jump processes is asked for. Allegra et al. [213,214] introduced an internal viscosity as a force which arises due to a transient departure from configurational equilibrium, that relaxes by reorientational jumps. Thereby, the rotational relaxation processes are described by one single relaxation rate Tj. From an expression for the difference in free energy due to small excursions from equilibrium an explicit expression for the internal viscosity force in terms of a memory function is derived. The internal viscosity force acting on the k-th backbone atom becomes ... [Pg.121]

Recently a very detailed study on the single chain dynamic structure factor of short chain PIB (M =3870) melts was undertaken with the aim to identify the leading effects limiting the applicability of the Rouse model toward short length scales [217]. This study was later followed by experiments on PDMS (M =6460), a polymer that has very low rotational barriers [219]. Finally, in order to access directly the intrachain relaxation mechanism experiments comparing PDMS and PIB in solution were also carried out [186]. The structural parameters for both chains were virtually identical, Rg=19.2 (21.3 A). Also their characteristic ratios C =6.73 (6.19) are very similar, i.e. the polymers have nearly equal contour length L and identical persistence lengths, thus their conformation are the same. The rotational barriers on the other hand are 3-3.5 kcal/mol for PIB and about 0.1 kcal/mol for PDMS. We first describe in some detail the study on the PIB melt compared with the PDMS melt and then discuss the results. [Pg.125]

The single chain dynamics of one given block or of one chain in a diblock copolymer melt is observed if a matched deuterated diblock is mixed with a small amount of labelled diblocks, where the label could be a protonated a or b block or a protonated chain. In terms of the dynamic RPA such a system is a four-component polymer mixture. It is characterized by four different relaxation modes A1-A4 which - depending on the contrast conditions - appear with... [Pg.173]

As pointed out above, the RPA theory predicts that the dynamics of the respective homopolymers should be observed at high Q in the Rouse regime. While the experiment shows that the predicted Q dependencies are reproduced well by the data, the absolute values for the observed relaxation rates disagree with the predictions (see Table 6.2). In particular the observed Rouse factors for PE are considerably smaller than predicted, (Wf )expt=2xl0 s" compared to Wf pa=3.8x 10 A s at T=473 K. At low Q values, the two blocks display the same single chain dynamics. [Pg.177]

Meltzer AD, Tirrell DA, Jones AA, Inglefield PT, Hedstrand DM, Tomalia DA. Chain dynamics in poly(amidoamine) dendrimers a study of carbon-13 NMR relaxation parameters. Macromolecules 1992 25 4541-4548. [Pg.302]

The dynamic RIS model of polymer chains is applied to the interpretation of nuclear magnetic relaxation measurements of local chain dynamics. According to the proposed model, the relaxation times Tlc and T1H may be related to the chemical structure of a specific polymer. [Pg.107]

The dynamic RIS model developed for investigating local chain dynamics is further improved and applied to POE. A set of eigenvalues characterizes the dynamic behaviour of a given segment of N motional bonds, with v isomeric states available to each bond. The rates of transitions between isomeric states are assumed to be inversely proportional to solvent viscosity. Predictions are in satisfactory agreement with the isotropic correlation times and spin-lattice relaxation times from 13C and 1H NMR experiments for POE. [Pg.107]


See other pages where Relaxation chain dynamics is mentioned: [Pg.545]    [Pg.669]    [Pg.67]    [Pg.29]    [Pg.60]    [Pg.112]    [Pg.290]    [Pg.16]    [Pg.17]    [Pg.194]    [Pg.110]    [Pg.122]    [Pg.64]    [Pg.95]    [Pg.216]    [Pg.117]    [Pg.142]    [Pg.148]    [Pg.149]    [Pg.151]    [Pg.156]    [Pg.178]    [Pg.179]    [Pg.185]    [Pg.207]    [Pg.343]    [Pg.143]    [Pg.271]    [Pg.709]    [Pg.143]    [Pg.709]    [Pg.115]    [Pg.196]    [Pg.125]   
See also in sourсe #XX -- [ Pg.313 , Pg.355 , Pg.356 , Pg.357 , Pg.358 , Pg.359 , Pg.361 , Pg.371 , Pg.374 , Pg.375 , Pg.379 ]




SEARCH



Chain dynamics

Chain dynamics relaxation, Rouse theory

Chain relaxation

Relaxation dynamics

© 2024 chempedia.info